
Extending the Scope of Syntactic Abstraction∗

Oscar Waddell
University of Kansas
owaddell@ittc.ukans.edu

R. Kent Dybvig
Indiana University
dyb@cs.indiana.edu

Abstract

The benefits of module systems and lexically scoped syntac-
tic abstraction (macro) facilities are well-established in the
literature. This paper presents a system that seamlessly in-
tegrates modules and lexically scoped macros. The system
is fully static, permits mutually recursive modules, and sup-
ports separate compilation. We show that more dynamic
module facilities are easily implemented at the source level
in the extended language supported by the system.

1 Introduction

The benefits of module systems and lexically scoped syn-
tactic abstraction (macro) facilities are well-established [1,
2, 3, 6, 7, 8, 12, 10, 11, 15, 16, 18]. Over the past several
years there has been increasing interest in combining lexi-
cally scoped macros and modules [2, 16, 17]. Building on this
work we present here the first fully implemented system that
allows arbitrary composition of module and macro facilities,
supports separate compilation, and supports fully general
macro transformations while maintaining lexical scoping for
all macros.

Our design derives from the philosophy that a program-
ming language should be based on a small core language aug-
mented by a powerful syntactic abstraction facility. The core
language should have simple constructs and a straightfor-
ward semantics, and the syntactic abstraction facility should
permit the definition of new language constructs whose mean-
ings can be understood in terms of their static translation
into the core language.

Our system extends the small core language and powerful
syntactic abstraction mechanisms of the syntax-case sys-
tem [4, 6] with support for modules. A module is a named
scope that encapsulates a set of identifier bindings. Im-
porting from a module makes these identifier bindings vis-
ible in the importing context. Modules control visibility of
bindings and can be viewed as extending lexical scoping to

∗This material is based on work supported in part by the Na-
tional Science Foundation under grants CCR-9623753 and CCR-
9711269.

Conference Record of POPL’99: The 26th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, 203–
213, January 1999. Copyright c© 1999 ACM.

allow more precise control over where bindings are or are
not visible. Modules export identifier bindings, i.e., vari-
able bindings, keyword bindings, or module name bindings.
The primitive module and import forms are simple, may be
extended via syntactic abstraction, and may appear at top
level, within local scopes, or nested within other modules.
A program containing module and import forms may be un-
derstood statically in terms of a straightforward translation
to core language forms.

The remainder of this paper is organized as follows. Sec-
tion 2 describes an extended language that supports both
modules and syntactic abstraction. Section 3 demonstrates
the synergy between modules and syntactic abstraction with
a series of short examples. Section 4 describes the implemen-
tation. Section 5 addresses practical concerns such as sepa-
rate compilation and supporting static program analysis in
the presence of powerful macro systems. Section 6 discusses
related work, and Section 7 presents our conclusions.

2 Language

2.1 Syntax

The core language of the syntax-case system is the core
language of the Revised5 Report on Scheme [9]. In the core
language, a program consists of a sequence of definitions and
expressions.

〈program〉 −→ 〈form〉*
〈form〉 −→ 〈definition〉 | 〈expression〉

A definition is a variable definition or a sequence of defini-
tions.

〈definition〉 −→ (define 〈variable〉 〈expression〉)
| (begin 〈definition〉*)

〈variable〉 −→ 〈identifier〉

An expression is a constant, a quoted datum, a variable
reference, an abstraction, an application, a conditional, or
an assignment.

〈expression〉 −→ 〈constant〉
| (quote 〈datum〉)
| 〈variable〉
| 〈lambda expression〉
| (〈expression〉 〈expression〉*)
| (if 〈expression〉 〈expression〉 〈expression〉)
| (set! 〈variable〉 〈expression〉)

〈lambda expression〉 −→ (lambda 〈formals〉 〈body〉)

1

A lambda body consists of a sequence of of zero or more
definitions followed by one or more expressions.

〈body〉 −→ 〈definition〉* 〈expression〉+

Thus, definitions may appear both at the top level of a pro-
gram or nested within a lambda body.

Support for syntactic abstraction is provided by extend-
ing the set of definition forms to include both keyword defi-
nitions and definitions derived via syntactic abstraction, i.e.,
macro calls that expand into definitions.

〈definition〉 −→ (define 〈variable〉 〈expression〉)
| (define-syntax 〈keyword〉 〈expression〉)
| (begin 〈definition〉*)
| 〈derived definition〉

〈keyword〉 −→ 〈identifier〉
〈derived definition〉 −→ 〈macro call〉

In addition, the set of expression forms is extended to in-
clude derived expressions.

〈expression〉 −→ 〈constant〉
| (quote 〈datum〉)
| 〈variable〉
| 〈lambda expression〉
| (〈expression〉 〈expression〉*)
| (if 〈expression〉 〈expression〉 〈expression〉)
| (set! 〈variable〉 〈expression〉)
| 〈derived expression〉

〈derived expression〉 −→ 〈macro call〉

As in the core language, definitions may appear at top level
or nested within lambda bodies. They may also appear
nested within the bodies of derived expressions that ex-
pand into lambda expressions, such as let, which expands
as shown below.

(let ((x e) . . .) form1 form2 . . .) −→
((lambda (x . . .) form1 form2 . . .) e . . .)
The language is further extended to support modules by

the addition of two new definition forms, module and import.

〈definition〉 −→ (define 〈variable〉 〈expression〉)
| (define-syntax 〈keyword〉 〈expression〉)
| (begin 〈definition〉*)
| 〈derived definition〉
| (module 〈module name〉 〈interface〉

〈definition〉* 〈expression〉*)
| (import 〈module name〉)

〈interface〉 −→ (〈identifier〉*)
〈module name〉 −→ 〈identifier〉

A module consists of a (possibly empty) set of definitions
and a (possibly empty) sequence of initialization expres-
sions. Each identifier listed in a module’s interface must be
defined within that module. Because module and import are
definitions, they may appear wherever other definitions may
appear: at top level, nested within a module or lambda body,
or nested within derived forms that expand into module or
lambda forms.

Although the language does not provide primitive con-
structs for separating interfaces from implementations, im-
porting only selected identifiers from a module, or renaming
exported identifiers, Section 3 demonstrates how such con-
structs may be obtained via syntactic abstraction.

The syntax of macro calls traditionally subsumes that of
variable reference only in the operator position of an appli-
cation. We generalize the concrete syntax of macro calls to

include other contexts in which an identifier reference may
occur.

〈macro call〉 −→ (〈keyword〉 〈form〉*)
| 〈keyword〉
| (set! 〈keyword〉 〈expression〉)
| (import 〈keyword〉)

Consequently, the syntax of macro calls subsumes that of
variable reference, variable assignment, and module import,
resulting in a significant increase in expressive power.

2.2 Scope

Except where shadowed, identifiers defined at top level are
visible throughout the program, while identifiers defined
within a body are visible only within that body.

A module definition introduces a named lexical scope.
Module names occupy the same namespace as other iden-
tifiers and follow the same scoping rules. Unless exported,
identifiers defined within a module are visible only within
that module. Identifiers exported from a module are visi-
ble within the module and where the module is imported. A
module is imported via an import of the module’s name. An
identifier made visible by import is scoped as if its defini-
tion appears where the import form appears. The following
example illustrates these scoping rules.

(let ((x 1))
(module M (x setter)

(define-syntax x (identifier-syntax z))
(define setter (lambda (x) (set! z x)))
(define z 5))

(let ((y x) (z 0))
(import M)
(setter 3)
(list x y z))) ⇒ (3 1 0)

The inner let expression binds y to the value of the x bound
by the outer let. The import of M makes the definitions of
x and setter visible within the inner let. In the expression
(list x y z), x refers to the identifier macro exported from
M, while y and z refer to the bindings established by the inner
let. The identifier macro x (defined using the syntactic
abstraction identifier-syntax) expands the reference to x
into a reference to the variable z defined within the module.

2.3 Semantics

Before it is compiled, a source program is translated into
a core language program containing no syntactic abstrac-
tions, syntactic definitions, module definitions, or import
forms. Translation is performed by a syntax expander that
processes the forms in the source program via recursive de-
scent. The semantics of the core language is defined in the
Revised5 Report on Scheme.

A define-syntax form associates a keyword with a trans-
former in a translation-time environment. When the ex-
pander encounters a keyword, it invokes the associated trans-
former and reprocesses the resulting form. A module form
associates a module name with an interface. When the
expander encounters an import form, it extracts the cor-
responding module interface from the translation-time en-
vironment and makes the exported bindings visible in the
scope where the import form appears.

Definitions within a lambda or module body are processed
from left to right so that a module’s definition and import
may appear within the same sequence of definitions. Ex-
pressions appearing within a body and the right-hand sides

2

of variable definitions, however, are translated only after
the entire set of definitions has been processed, allowing full
mutual recursion among variable and syntactic definitions.

Module and import forms affect only the visibility of
identifiers in the source program, not their denotations. In
particular, variables are bound to locations whether defined
within or outside of a module, and import does not intro-
duce new locations.

Local variables are renamed as necessary to preserve
the scoping relationships established by both modules and
syntactic abstractions. Thus, the module program in Sec-
tion 2.2 is equivalent to the following program in which iden-
tifiers have been consistently renamed as indicated by sub-
scripts.

(let ([x0 1])
(define-syntax x1 (identifier-syntax z1))
(define setter1 (lambda (x2) (set! z1 x2)))
(define z1 5)
(let ([y3 x0] [z3 0])

(setter1 3)
(list x1 y3 z3)))

Both programs are equivalent to the core-language program
below in which syntactic abstractions have been expanded.

((lambda (x0)
(define setter1 (lambda (x2) (set! z1 x2)))
(define z1 5)
((lambda (y3 z3)

(setter1 3)
(list z1 y3 z3))

x0

0))
1)

The mechanisms by which expansion and renaming occur
are described in Section 4.

Although definitions within a lambda or module body
are processed from left to right by the expander, the order
of evaluation of variable definitions is not specified. Ini-
tialization expressions appearing within a module body are
evaluated in sequence after the evaluation of the variable
definitions.

3 Examples

The examples in this section show that many useful module
constructs can be derived from the primitive module and
import forms via syntactic abstraction.

3.1 Qualified reference

It is often convenient to refer to one export of a module
without importing all of its exports. While our system does
not provide an explicit construct for this purpose, a qualified
reference macro can easily be defined and used as follows.

(define-syntax from
(syntax-rules ()

((M id) (let () (import M) id))))

(let ((x 10))
(module m1 (x) (define x 1))
(module m2 (x) (define x 2))
(list (from m1 x) (from m2 x))) ⇒ (1 2)

3.2 Anonymous modules

Often it is convenient to avoid naming a module that is im-
ported only in the block where it is defined. The following

macro supports anonymous as well as named modules. An
anonymous module definition expands into a sequence con-
taining the definition and immediate import of an equivalent
module named tmp. Because the macro expander automati-
cally renames introduced identifiers, the name tmp is visible
only to the import form introduced by the macro.

(define-syntax module*
(syntax-rules ()

[((id . . .) form . . .)
(begin

(module* tmp (id . . .) form . . .)
(import tmp))]

[(name (id . . .) form . . .)
(module name (id . . .) form . . .)]))

3.3 Selective import and renaming

While the import construct of the core language does not
directly support renaming of imported bindings or selective
import of specific bindings, the following macro does provide
these capabilities.

(define-syntax import*
(syntax-rules ()

[(M) (begin)]
[(M (new old))
(module* (new)

(define-alias new tmp)
(module* (tmp)

(import M)
(define-alias tmp old)))]

[(M id) (module* (id) (import M))]
[(M spec0 spec1 . . .)
(begin (import* M spec0)

(import* M spec1 . . .))]))
To selectively import an identifier from module M, the macro
expands into an anonymous module that first imports all
exports of M then re-exports only the selected identifier.
To rename on import, the macro expands into an anony-
mous module that instead exports an alias bound to the
new name. The alias is simply an identifier macro that ex-
pands into a reference to the old name visible where the alias
is defined.

If the macro placed the definition of new in the same
scope as the import of M, and new is also present in the
interface of M, a naming conflict would arise. To prevent
this, the macro instead places the import within a nested
anonymous module and links old and new by means of an
alias for the introduced identifier tmp.

The macro expands recursively to handle multiple import
specifications. Thus the following construct imports x, y
(renamed as z), and z (renamed as y) from module m.

(import* m x (y z) (z y))

The define-alias macro is given below. Since aliases are
resolved at translation time, programs using define-alias
and import* incur no run-time penalty.

(define-syntax define-alias
(syntax-rules ()

[(x y)
(define-syntax x

(identifier-syntax y))]))

3.4 Multiple views on modules

Because a module can re-export imported bindings, it is
quite easy to provide multiple views on a single module, as

3

D and E provide for C below, or to combine several modules
into a compound module, as C does.

(module A (x y)
(define x 1) (define y 2))

(module B (y z)
(define y 3) (define z 4))

(module C (a b c d)
(import* A (a x) (b y))
(import* B (c y) (d z)))

(module D (a c) (import C))
(module E (b d) (import C))

3.5 Mutually recursive modules

Mutually recursive modules can be defined in several ways
(see also Section 3.8). In the following program, A and B
are mutually recursive modules exported by an anonymous
module whose local scope is used to statically link the two.
For example, the free variable y within module A refers to
the binding for y provided by the import of B in the enclosing
module.

(module* (A B)
(module A (x) (define x (lambda () y)))
(module B (y) (define y (lambda () x)))
(import A)
(import B))

The following syntactic abstraction generalizes this pattern
to permit the definition of multiple mutually recursive mod-
ules.

(define-syntax rec-modules
(syntax-rules ()
(((module N (id . . .) form . . .) . . .)
(module* (N . . .)

(module N (id . . .) form . . .) . . .
(import N) . . .))))

Recursive modules residing in different source files can
be combined using the include macro. For example, if a
program consists of two modules, m1 and m2, residing in files
m1.ss and m2.ss, they can be combined as follows:

(module* (m1 m2)
(include "m1.ss")
(include "m2.ss")
(import m1)
(import m2))

As shown below, the rec-modules macro can be adapted to
support modules located in different source files.

(define-syntax rec-modules
(syntax-rules ()

[(include (m file) . . .)
(module* (m . . .)

(include file) . . .
(import m) . . .)]))

Using this version of rec-modules, the example given earlier
can be written as follows.

(rec-modules include
(m1 "m1.ss")
(m2 "m2.ss"))

3.6 Separating interface from implementation

To allow interfaces to be separated from implementations,
the following macros support the definition and use of named
interfaces.

(define-syntax define-interface
(syntax-rules ()

[(name (export . . .))
(define-syntax name

(lambda (x)
(syntax-case x ()

[(n defs)
(with-implicit (n export . . .)

#’(module n (export . . .) .
defs))])))]))

(define-syntax define-module
(syntax-rules ()

[(name interface defn . . .)
(interface name (defn . . .))]))

define-interface creates an interface macro that, given a
module name and a list of definitions, expands into a module
definition with a concrete interface.1 These macros can be
used as follows.

(define-interface simple (a b))
(define-module M simple

(define-syntax a (identifier-syntax 1))
(define b (lambda () c))
(define c 2))

(let () (import M) (list a (b))) ⇒ (1 2)

3.7 Compound interfaces

It is sometimes convenient to combine several interfaces into
a compound interface as shown below.

(define-interface one (a b))
(define-interface two (c d))
(define-interface both

(compound-interface one two))

The separate interface abstraction defined in Section 3.6 can
be extended to support compound interfaces by introducing
a limited reflection mechanism. When expanded, the follow-
ing define-interface macro defines a macro representing
the interface as before.

(define-syntax define-interface
(syntax-rules (compound-interface)

[(name (compound-interface i0 i1 . . .))
(d-i-help name (i0 i1 . . .) ())]
[(name (export . . .))
(define-syntax name

(lambda (x)
(syntax-case x (expand-exports)

[(n defs)
(with-implicit (n export . . .)

#’(module n (export . . .) . defs))]
[((expand-exports i-name mac))
(with-implicit (i-name export . . .)

#’(mac i-name export . . .))])))]))
For example, the definition (define-interface one (a b))
expands into the following macro definition.

(define-syntax one
(lambda (x)

(syntax-case x (expand-exports)
[(n defs)
(with-implicit (n a b)

#’(module n (a b) . defs))]
[((expand-exports i-name mac))

1with-implicit, used here to ensure that the introduced
export identifiers are visible in the same scope as the name of
the module in the define-module form, is implemented in terms
of datum->syntax-object [4, 6]. The reader syntax #’〈form〉
expands into (syntax 〈form〉).

4

(with-implicit (i-name a b)
#’(mac i-name a b))])))

The second clause of this macro provides a simple mecha-
nism for reflecting on the interface. When invoked with the
expand-exports auxiliary keyword, the name of the inter-
face i-name, and the name of a macro mac, this interface
macro now expands into the macro call (mac i-name a b).
By analogy with continuation-passing style (CPS), the macro
mac supplied as an argument to the interface macro is a
continuation that takes as input the set of exports in the
interface.

To construct a compound interface, define-interface
calls upon the d-i-help macro, defined below, to collect the
exports of the constituent interfaces.2

(define-syntax d-i-help
(syntax-rules ()

[(name () (export . . .))
(define-interface name (export . . .))]

[(name (i0 i1 . . .) (e . . .))
(begin

(define-syntax tmp
(syntax-rules ()
[(name expt (.))
(d-i-help name (i1 . . .)

(e . . . expt (.)))]))
(i0 (expand-exports name tmp)))]))

The d-i-help macro takes the interface name, a list of con-
stituent interfaces, and a list of exports collected so far.
When it has finished processing all constituent interfaces,
d-i-help simply calls define-interface with the list of
exports collected. In the recursive case, d-i-help uses the
reflective facility of the first constituent interface, i0. The
continuation macro, tmp, extends the list of exports collected
so far and invokes d-i-help recursively to process the re-
maining interfaces.

It is not always convenient to define a compound inter-
face explicitly. The following version of define-module al-
lows a compound interface to be specified directly.

(define-syntax define-module
(syntax-rules (compound-interface)

[(name (compound-interface i . . .) defn . . .)
(begin

(define-interface tmp
(compound-interface i . . .))

(define-module name tmp defn . . .))]
[(name interface defn . . .)
(interface name (defn . . .))]))

(define-module M (compound-interface one two)
(define a 1)
(define b 2)
(define c 3)
(define d 4))

(let () (import M) (list a b c d)) ⇒ (1 2 3 4)

3.8 Satisfying interfaces incrementally

The abstract module facility defined below allows a module
interface to be satisfied incrementally. This permits flex-
ibility in the separation between the interface and imple-
mentation, and it supports separate compilation of mutually
recursive modules.

2The pattern (... ...) produces a single ellipsis in the
output of the macro. Thus the input pattern specification
of the tmp macro introduced in the expansion of d-i-help is
(name expt ...).

(define-syntax abstract-module
(syntax-rules ()

((name (ex . . .) (mac . . .) defn . . .)
(module name (ex . . . mac . . .)

(declare ex) . . .
defn . . .))))

(define-syntax implement
(syntax-rules ()

((name form . . .)
(module* () (import name) form . . .))))

The following example illustrates the use of abstract mod-
ules to define mutually recursive modules. We first define
two abstract modules, E and O.

(abstract-module E (even?) ())

(abstract-module O (odd?) (pred)
(define-syntax pred

(syntax-rules () ((exp) (- exp 1)))))

We then define implementations of these modules, each of
which imports from the other.

(implement E
(import O)
(satisfy even?

(lambda (x)
(or (zero? x) (odd? (pred x))))))

(implement O
(import E)
(satisfy odd?

(lambda (x) (not (even? x)))))

declare and satisfy may simply be define and set!, al-
though a single-assignment semantics may be more appro-
priate for satisfy.

The interfaces of these abstract modules can be sep-
arately compiled. Because the modules are mutually re-
cursive, the compiled interfaces of both modules must be
loaded in order to compile either implementation. Subject
to this restriction, the implementations may be separately
compiled. The compiled interface of an abstract module
must be loaded before attempting to use its compiled im-
plementation.

4 Implementation

The module system is implemented by extending the syntax-
case macro system [6]. Section 4.1 describes the existing
macro system, and Section 4.2 shows how the macro system
is extended to support modules.

4.1 The syntax-case system

As described in Section 2.3, a source program is translated
into the core language before it is compiled. To preserve
lexical scoping during translation, the syntax-case macro
system consistently renames bound variables (α-conversion).
This substitution process is fully automated by the system
and is transparent to the user.

During translation, identifier references are resolved via
a two-level map consisting of a substitution environment
and a store. The substitution environment maps symbols
to labels in the store. It is represented as a sequence of
sub-environments called ribs, each of which corresponds to
a single lexical contour. When searching the substitution
environment, the ribs corresponding to the innermost con-
tours are consulted first in accordance with lexical scoping.

5

The store maps labels to translation-time bindings that
describe the roles of the corresponding identifiers in the in-
put program. For example, if the environment and store
map a symbol to a macro transformer, the symbol represents
a syntactic keyword. The store is used to detect attempts
to reference run-time bindings within code that is evaluated
at translation time.

Macro transformers operate on syntax objects. In ad-
dition to the usual list-structured source expression, a syn-
tax object contains the substitution environment and marks,
collectively referred to as the wrap, that apply to the entire
expression.

Substitutions are introduced by core binding forms. For
example, the lambda transformer creates a substitution rib
mapping each formal parameter to a fresh label, and extends
the store to map each label to a fresh variable. This rib is
added to the substitution environment of the syntax object
representing the lambda body before the body is processed
recursively by the macro expander.

Marks are introduced when the expander invokes a macro
transformer. A fresh mark is applied to the input of the
transformer and the same mark is applied to the output of
the transformer. Because identical marks cancel when they
meet, marks adhere only to expressions introduced in the
expansion of a macro. Substitutions are keyed with marks
to prevent substitutions for identifiers introduced in the ex-
pansion of a macro from affecting identifiers not introduced
by the macro. An identifier is renamed only when the set
of marks on that identifier is identical to the set of marks
associated with the symbol in the substitution environment.

Within programs, macro transformers are simply lambda
expressions whose chief distinction is that they may be eval-
uated and applied at translation time. Syntax objects com-
monly appear in the expanded code of these transform-
ers. For example, a syntax object representing the iden-
tifier lambda appears within the expanded code for the let
transformer. This syntax object contains the substitution
environment and marks in effect where let was defined.
Therefore let expands into a reference to the binding for
lambda visible in the scope where let was defined.

Using syntax objects as the input and output of macro
transformers enables the system to perform α-conversion
lazily. In addition, this representation allows the system
to correlate program source and object code through arbi-
trary user-defined transformations. Macro transformers de-
structure their input using a pattern-matching facility that
exposes list structure within a syntax object and propagates
the wrap to the exposed subforms. Syntax objects are de-
structured only as far as is necessary for pattern matching.

The lazy substitution model is important for two reasons.
First, applying substitutions on demand is far more efficient
than repeatedly traversing subexpressions to apply substi-
tutions eagerly. In fact, lazy substitution maintains lexical
scoping with constant overhead on macro expansion. Sec-
ond, by delaying substitution until it can determine the role
of an input expression, the system avoids traversing (poten-
tially cyclic) structured constants, and it avoids renaming
identifiers used as symbolic data. For example, in the body
of the following lambda expression, the two occurrences of x
have different roles: the first refers to the formal parameter,
and must be renamed, while the second is used as symbolic
data, and must retain its original name.

(lambda (x)
(define-syntax f

(syntax-rules () ((e) (quote e))))
(cons x (f x)))

As this example illustrates, the role of an input expression
cannot be determined until macro expansion of surrounding
forms is complete.

4.2 Adding modules

The module system uses the α-conversion machinery de-
scribed in Section 4.1 to control the visibility of identifiers.
To support modules, the rib structures contained in substi-
tution environments are modified so that they may be ex-
tended incrementally, and an interface structure (described
below) is added to the set of translation-time bindings to
which the store maps.

When processing a lambda expression or module form,
the expander creates an extensible rib in the substitution
environment. This rib is part of the wrap pushed down
on the form (and propagated to subforms) by the pattern
matcher. Definitions within the lambda body or module
form extend this rib with substitutions renaming the iden-
tifiers they bind. Internal definitions extend the store with
translation-time bindings such as local macro transformers
and module interfaces.

To determine the set of internal definitions, the system
partially expands each subform in the body of the lambda
or module form until it finds the first non-definition. When
it encounters a macro call, the system expands the macro
and processes any definitions in the resulting output. For
define, define-syntax, and module forms, the system ex-
tends the substitution rib of the local scope with a fresh
label for the defined variable, keyword, or module name.
For a define form, the system defers expansion of the ex-
pression on the right-hand side and extends the store with a
mapping from the fresh label to a translation-time structure
representing the lexical variable. For define-syntax forms,
the transformer expression is expanded and evaluated to ob-
tain a procedure that is installed in the store as the binding
for the fresh label. For module forms, the store is extended
with a mapping from the fresh label to an interface structure
listing the exports of the module. The sequencing construct,
begin, is treated as a splicing form: its subforms are simply
added in its place to the list of subforms to be processed.

The system processes module forms recursively to collect
the set of internal definitions. Definitions inside and outside
the module are identical except that the substitution rib ex-
tended by definitions inside the module is present only in
the wrap pushed down on syntax objects representing ex-
pressions within the module. Because internal definitions
extend a local substitution rib introduced by the module,
substitutions for the defined identifiers are not visible out-
side the module. Bindings in the enclosing scope are visible
within the module because the substitution environments
inside and outside the module share a common tail.

Definitions within the module extend the store of the en-
closing lambda or top-level module form. These bindings are
accessible only where the substitutions introduced by defi-
nitions within the module are in effect. The import form
makes available the substitutions introduced for identifiers
exported from the module. An exported macro can intro-
duce valid references to other bindings in the module where
it is defined even when those bindings are not visible or are
shadowed where the macro is used. This is possible because
syntax objects inserted by the macro close over the substi-
tution environment in effect where they are constructed. In
particular, the module rib extended by internal definitions is
present in the wrap of each syntax object constructed while
processing the module.

6

When the expander encounters an import form, it looks
up the module name in the substitution environment and
then looks up the resulting label in the store to obtain the
module interface. The module’s interface structure contains
syntax objects naming the exports. These syntax objects
contain the module’s substitution rib within their wraps. To
import a module, the system extends the substitution rib of
the enclosing lexical scope with the substitutions extracted
from the exported identifiers.

After processing the internal definitions of a lambda or
module form, the system expands the expressions on the
right-hand sides of variable definitions and expands any non-
definition forms following the definitions. For lambda it then
wraps the body in a letrec form binding variables defined
locally. For top-level module forms it produces a series of
top-level definitions for the renamed identifiers. To aid static
analysis we improve on this expansion for top-level module
forms in Section 5.2.

5 Practical Considerations

This section discusses extensions to the language and trans-
lation mechanism to support separate compilation, static
program analysis, and isolated scopes.

5.1 Separate compilation

The implementation described in Section 4 supports both in-
ternal and top-level modules. For internal modules, the new
names generated by the expander must be locally unique,
i.e., not otherwise visible within the same top-level expres-
sion. For top-level modules within a single compilation
unit, the names must be unique within the compilation unit.
When multiple compilation units may be linked together,
the names must be unique across compilation units.

Our system supports both incremental compilation and
linking of compilation units compiled by different runs of
the compiler. Since the compiler may be invoked simulta-
neously on the same or different physical hardware, global
name generation factors in the host’s network interface iden-
tifier, process identifier (PID), and compiler invocation time.
Some operating systems provide system calls that generate
unique names in much the same fashion.

If a module m2 imports from a module m1, the compiler
must have the interface for m1 in order to compile m2. When
a source file containing m1 is compiled, the resulting object
file contains the compiled code for m1, its interface, and com-
piled code for any macro transformers defined by m1. Before
compiling m2, it is necessary to first load or visit m1’s ob-
ject file to install its interface and transformers. While both
load and visit install the interface and transformers, load
also loads the compiled code and evaluates the initialization
expressions.

5.2 Static program analysis

One benefit of modular program structure is that it may im-
prove the results of static analysis. In the presence of sep-
arate compilation, global variables are subject to arbitrary
manipulation by compilation units that may be unavailable
for scrutiny by the compiler. Variables not exported from
a module, however, are effectively local and may therefore
present opportunities for analysis and optimization.

The ability to export macros complicates the situation,
since exported macros may expand into references or assign-
ments to nonexported variables. It is tempting to believe

that a straightforward analysis of the transformer expres-
sion can determine the set of these implicit exports. Even
with the constrained syntax-rules transformers, however,
such an analysis is necessarily conservative. For example,
consider the following definition for module M.

(module M (a b)
(define-syntax a

(syntax-rules ()
[(e0 e1 . . .) (e0 (quote c) e1 . . .)]))

(define b (lambda () c))
(define c 3))

It appears that c is not referenced outside the definition of b.
The only other occurrence of c is within the macro a, where
it is apparently used as symbolic data. As the following
program demonstrates, however, code outside the module
may not only reference but also assign c.

(let ()
(define-syntax f

(syntax-rules ()
[((any id)) id]
[((any id) value) (set! id value)]))

(import M)
(let ([original (a f)])

(a f 4)
(list original (b)))) ⇒ (3 4)

Here (a f) expands to (f (quote c)), which further ex-
pands to the reference c. Similarly, (a f 4) expands to
(f (quote c) 4), which further expands to the assignment
(set! c 4). Because the compiler does not know how the
macro a will be used in separately compiled code, it must
conservatively assume that the variable c is assigned and
that its value escapes.

Even conservative analysis is impossible if transformers
are able to synthesize new identifiers from existing identi-
fiers, e.g., using datum->syntax-object [4, 6]. For example,
consider the following module definition.

(module foo (access)
(define a 123)
(define-syntax b (identifier-syntax 456))
(define-syntax access

(lambda (x)
(syntax-case x ()

[(exp)
(datum->syntax-object #’b

(syntax-object->datum #’exp))]))))

The access macro returns its argument expression intact
but for one key difference: the wrap on the input is re-
placed with the wrap from the identifier b bound inside the
module.3 Consequently, expanding (access exp) has the
effect of expanding exp within the module scope. For exam-
ple, (access b) constructs a reference to the private syntax
binding b and (access (set! a 3)) constructs an assign-
ment to the private variable binding a.

In fact, the access macro need not be defined within
the module that is violated. A module boundary can be
breached if any syntax object constructed within the module
may arrive at a call to the procedure datum->syntax-object.
For instance, the expose macro below is virtually identical to
the access macro defined earlier except that it transplants
the wrap from an identifier in its input onto exp.

3The choice of b here is arbitrary. Each syntax object in the
module carries in its wrap sufficient information to access any
module binding.

7

(begin
(cte-install! m8 ’interface ’#(interface #<import-token> (#<syntax-object a0> #<syntax-object c6>)))
(cte-install! a0 ’transformer (identifier-syntax b1))
(cte-install! b1 ’transformer (identifier-syntax c2))
(letrec ([e3 (lambda (x4) (* x4 2))])

(set! c2 (lambda (x5) (e3 x5)))
(set! c6 (lambda (x7) (e3 (+ x7 1))))))

Figure 1: Sample expansion of a module that exports a macro with implicit exports.

(define-syntax expose
(lambda (x)
(syntax-case x ()

(((any n . . .) exp)
(datum->syntax-object #’any

(syntax-object->datum #’exp))))))

Now consider the module defined below and observe that
the macro a contains no occurrences of the identifier b. In
fact, b is not even referenced within the module.

(module foo (a)
(import scheme)
(define-syntax a

(syntax-rules ()
[(e0 e1 . . .)
(e0 (quote 3) e1 . . .)]))

(define b 1))

The expose macro provides arbitrary access to bindings
within the foo module, including b, as illustrated below.

(let ()
(import foo)
(a expose

(let ((old b))
(set! b 5)
(list old b)))) ⇒ (1 5)

One partial solution is to disallow assignments outside
the module to unexported variables. This limits the ex-
pressive power of exported macros and does not address
the problem of escaping values. Another partial solution is
to introduce a define-constant form that establishes im-
mutable bindings. This does not inherently limit the ex-
pressive power of exported macros but leaves the problem
of escaping values.

We have chosen instead to require that implicit exports
be explicitly declared in the interface for top-level modules4

using the following syntax.

〈interface〉 −→ (〈export〉*)
〈export〉 −→ 〈identifier〉 | (〈identifier〉 〈export〉*)

Declarations of implicit exports are propagated to enclosing
interfaces where an identifier is exported. For example, the
module m defined below exports only a and c, but the export
of a causes the implicit export of b and c from module n.

(module m ((a b) c)
(define-syntax a (identifier-syntax b))
(module n ((b c) (d e))

(define-syntax b (identifier-syntax c))
(define c (lambda (x) (d x)))
(define-syntax d (identifier-syntax e))
(define e (lambda (x) (* x 2))))

(import n)
(define c (lambda (x) (d (+ x 1)))))

4The declarations are permitted but not required for internal
modules.

Because e is not exported, explicitly or implicitly, it is bound
locally in the output of the expander. Thus the preceding
program is equivalent to the code in Figure 1. Because e
is not assigned, it can be integrated by a later pass of the
compiler.

5.3 Isolated scopes

Expressions within a module can reference identifiers bound
outside of the module. For example, the following expression
evaluates to 8.

(let ((x 3))
(module m (plusx)

(define plusx (lambda (y) (+ x y))))
(import m)
(let ((x 4)) (plusx 5)))

The system also supports a variant of import, called
import-only, that creates an isolated scope, in which the
only visible identifiers are those exported by the imported
module. This is useful for static verification that a module
does not access identifiers that are not explicitly provided by
the import. For example, the following expression generates
a translation-time error.

(let ((x 3))
(module m ())
(import-only m)
x)

By using import-only to implement the qualified reference
macro of Section 3, we ensure that it introduces a reference
to the intended export and not to some local binding.

(define-syntax from
(syntax-rules ()

((M id) (let () (import-only M) id))))

When a module is imported via import-only, subse-
quent imports are not possible unless this module exports
the name of at least one module and import or import-only.
To create an isolated scope containing the exports of more
than one module without making import or import-only
visible, it is necessary to create a single module that con-
tains the exports of each of the other modules.

(module m2 (y) (define y ’y))
(module m1 (x) (define x ’x))
(module compound-module (x y cons)

(import m1)
(import m2)
(import scheme))

(let ((x 3))
(import-only compound-module)
(cons x y)) ⇒ (x . y)

Like the module and import forms, the import-only
form is a primitive language construct treated specially by
the macro expander. The macro expander makes the ex-
ports of a module imported via import-only visible in the

8

same manner as for import. In addition, the expander adds
to the local substitution rib a fail token, keyed with the
set of marks that apply to the import-only identifier. To
determine the role of a source-program identifier, the ex-
pander consults the substitution environment and the store
as before. An error is signalled if the expander encounters a
matching fail token while searching the substitution envi-
ronment for the symbol and marks representing that iden-
tifier. To match, the set of marks associated with the fail
token must match the set of marks on the identifier.

6 Related Work

Our system is similar in some respects to systems described
by Curtis and Rauen [2] and Rees [16]. Our system is based
on simpler core module constructs, however, and derives its
expressive power largely via syntactic abstraction. While
the other systems build in support for separation of inter-
face from implementation, for example, our system allows
multiple interface separation mechanisms to be created via
syntactic abstraction. Curtis and Rauen forbid the defini-
tion and import of modules in local scopes, a feature we have
found quite useful. It is not clear whether Rees intends to
permit local module definitions. Although the implementa-
tion (in Scheme 48) does not forbid the such definitions, it
provides no apparent way to use them. In both systems, the
use of syntactic abstractions expressed in terms of modules
is limited. Neither system implements separate compilation.

Rees points out that prohibiting assignment to imported
bindings permits the compiler to assume that any variable
not assigned within a module is never assigned. The cur-
rent Scheme 48 implementation, however, does not enforce
this restriction. In particular, a Scheme 48 transliteration
of the first example in Section 5.2 shows that code outside a
module can assign an apparently unassigned variable, even if
that variable is not exported. To avoid this, the implemen-
tation would have to prevent exported macros from expand-
ing into assignments to either exported or nonexported vari-
ables, limiting expressiveness. Curtis and Rauen describe a
similar restriction but give few details and no implementa-
tion.

Curtis and Rauen propose a meta-module facility that
permits the modularization of the code used in transformer
expressions. In particular, they allow macro transformers to
share code. Meta-modules are similar to ordinary modules
except that they export only variable bindings and they are
evaluated at translation time. This is a useful feature that
our system currently lacks, although nothing in our system
precludes support for such a feature.

Queinnec and Padget describe a module language for
controlling the visibility of sets of named locations [13, 14].
They describe a high-level macro expansion protocol in-
tended to support various macro system implementations
such as expansion-passing style [5] or hygienic systems based
on syntactic closures [1]. Because their system is not tightly
integrated with the macro expander they do not permit
nested modules, nor do they permit macros to expand into
module constructs.

The Dylan programming language [17] supports both
modules and lexically scoped macros. Their macro system
is more restrictive in its treatment of symbols and identi-
fiers. Macro and module definitions can appear only at the
top level of a compilation unit (library), and import is tied
to the module syntax, limiting expressiveness. To deter-
mine the set of identifiers implicitly exported by macros,
the body of each macro transformer is analyzed. Because

it is generally impossible to compute the precise set of im-
plicitly exported bindings, an upper bound is computed by
assuming exported any binding with the same name as an
identifier appearing in the right-hand side of a rewrite rule.

We considered implementing a similar analysis in our
system but ultimately dismissed this approach for two rea-
sons. First, by foiling the conservative analysis, seemingly
innocent edits can have unanticipated performance conse-
quences. For example, inserting a quoted symbol in the
wrong place can cause the like-named identifier to be implic-
itly exported. Second, our mechanism for intentional cap-
ture, datum->syntax-object, is sufficiently powerful that all
identifiers are potential implicit exports, as demonstrated in
Section 5.2. While Dylan provides a limited form of inten-
tional capture via the macro template modifier ?=, this is
insufficient to express macros such as include [4].

Flatt and Felleisen propose a system for dynamically
linking separately compiled program units [7, 8]. While
it does not permit the export of macros, the unit facility
is interesting as representative of systems providing both
higher-order modules and programmatic control over link-
ing. They argue against module linkage via static import
and instead propose a mechanism that provides program-
matic control over module linkage. We believe that the in-
terfaces should be specified statically whenever possible as
an aid to static program analysis (both by the programmer
and by the compiler). However, the static nature of our sys-
tem does not preclude support for dynamic module linkage.
As demonstrated in Figure 2, the unit module system can
be implemented entirely at the source level in our language.

7 Conclusion

We have presented a language design that augments a small
core language with simple module and import forms and a
powerful syntactic abstraction facility that permits the con-
struction of new language features, including richer module
constructs. The module language is based entirely on ma-
nipulation of static scope. A program containing modules
can therefore be understood in terms of a straightforward
translation into the core language without module forms.

We have demonstrated how syntactic abstractions can be
defined to support anonymous modules, qualified module ac-
cess, mutual recursion, multiple views on a single module,
arbitrary combination of modules, separate interfaces, com-
pound interfaces, and incrementally satisfiable interfaces.

Module definitions and imports may appear in any con-
text where variable or keyword definitions may appear, al-
lowing modules to be nested or to be used locally. Modules
are therefore useful not only for large-scale software develop-
ment but also at a micro-modular level within expressions.

We have fully implemented the features described in this
paper and incorporated the implementation into the front
end of the Chez Scheme compiler. The system supports
both incremental and separate compilation. A portable im-
plementation of the module system is freely available via
ftp5.

Acknowledgements

Comments from Mike Ashley, Bob Burger, Dan Friedman,
Brian Moore, and anonymous reviewers improved the pre-
sentation of the paper.

5ftp.cs.indiana.edu/pub/syntax-case

9

(module Unit ((unit make-unit) (compound-unit make-unit) invoke-unit)
(define-syntax make-unit
(syntax-rules ()

[(((ev eloc) . . .) (iv . . .) form . . .)
(values (list (cons ’ev eloc) . . .) (lambda (iv . . .) form . . . (void)))]))

(define-syntax unit
(lambda (x)

(syntax-case x (import export)
(((import iv . . .) (export ev . . .) form . . .)
(with-syntax (((eloc . . .) (generate-temporaries (syntax (ev . . .)))))

#’(lambda ()
(let ((eloc (box ’undefined)) . . .)
(make-unit ((ev eloc) . . .) (iv . . .)

(module* () (set-box! eloc ev) . . .)
(let-syntax ((iv (identifier-syntax

((unbox iv))
((set! val) (set-box! iv val))))

. . .)
form . . .)))))))))

(define-syntax compound-unit
(lambda (x)

(syntax-case x (import link export)
(((import iv . . .) (link (ltag (expr linkage . . .)) . . .) (export (etag ev) . . .))
(with-syntax (((ulocs . . .) (generate-temporaries (syntax (ltag . . .))))

((uimp . . .) (generate-temporaries (syntax (ltag . . .)))))
#’(lambda ()

(mvlet* ([(ulocs uimp) (expr)] . . .)
(define-syntax ltag

(syntax-rules ()
((id) (cdr (assq ’id ulocs))))) . . .

(make-unit ((ev (etag ev)) . . .) (iv . . .) (uimp linkage . . .) . . .))))))))
(define-syntax invoke-unit

(syntax-rules ()
[(expr) (mvlet* ([(ulocs uimp) (expr)]) (uimp))])))

Figure 2: An implementation of the Unitd module facility of Flatt and Felleisen. A unit is a procedure that returns an
interface and an implementation procedure that is parameterized over its imports. A unit interface associates variable names
with first-class reference cells. Within a unit implementation, references and assignments to imported variables are rewritten
(via identifier-syntax) as explicit operations on the reference cells passed in as arguments. A group of units is linked by
obtaining the interfaces and implementations of each and invoking each implementation procedure with an appropriate set
of reference cells from the various interfaces as determined from the linkage specification. A fully linked unit is invoked by
invoking its implementation procedure.

References

[1] William Clinger and Jonathan Rees. Macros that work.
In Conference Record of the Seventeenth Annaual ACM
Symposium on Principles of Programming Languages,
pages 155–162, January 1991.

[2] Pavel Curtis and James Rauen. A module system for
Scheme. In Proceedings of the 1990 ACM Conference on
LISP and Functional Programming, pages 13–19, June
1990.

[3] Harley Davis, Pierre Parquier, and Nitsan Séniak. Talk-
ing about modules and delivery. In Proceedings of the
1994 ACM Conference on LISP and Functional Pro-
gramming, pages 113–120, 1994.

[4] R. Kent Dybvig. The Scheme Programming Language.
Prentice-Hall, second edition, 1996.

[5] R. Kent Dybvig, Daniel P. Friedman, and Christo-
pher T. Haynes. Expansion-passing style: A general
macro mechanism. Lisp and Symbolic Computation,
1(1):53–75, 1988.

[6] R. Kent Dybvig, Robert Hieb, and Carl Bruggeman.
Syntactic abstraction in Scheme. Lisp and Symbolic
Computation, 5(4):295–326, 1993.

[7] Robert Bruce Findler and Matthew Flatt. Modular
object-oriented programming with units and mixins. In

Proceedings of the 1998 ACM SIGPLAN International
Conference on Functional Programming, pages 94–104,
September 1998.

[8] Matthew Flatt and Matthias Felleisen. Units: Cool
modules for HOT languages. In Proceedings of the ACM
SIGPLAN ’98 Conference on Programming Language
Design and Implementation, pages 236–248, June 1998.

[9] Richard Kelsey, William Clinger, and Jonathan A. Rees
(Editors). Revised5 report on the algorithmic language
Scheme. SIGPLAN Notices, 33(9):26–76, 1998.

[10] Eugene Kohlbecker, Daniel P. Friedman, Matthias
Felleisen, and Bruce Duba. Hygienic macro expansion.
In Proceedings of the 1986 ACM Conference on LISP
and Functional Programming, pages 151–161, 1986.

[11] Eugene E. Kohlbecker. Syntactic Extensions in the Pro-
gramming Language Lisp. PhD thesis, Indiana Univer-
sity, Bloomington, Indiana, 1986.

[12] David MacQueen. Modules for standard ML. In Con-
ference Record of the 1984 ACM Symposium on LISP
and Functional Programming, pages 198–207, 1984.

[13] Christian Queinnec and Julian Padget. A deterministic
model for modules and macros. Bath Computing Group
Technical Report 90-36, University of Bath, Bath (UK),
1990.

10

[14] Christian Queinnec and Julian Padget. Modules,
macros and Lisp. In Eleventh International Confer-
ence of the Chilean Computer Science Society, pages
111–123, Santiago (Chile), October 1991. Plenum Pub-
lishing Corporation, New York NY (USA).

[15] Jonathan Rees. Modular macros. Master’s thesis, Mas-
sachusetts Institute of Technology, May 1989.

[16] Jonathan Rees. Another Module System for Scheme.
Massachusetts Institute of Technology, 1994. Scheme
48 documentation.

[17] Andrew Shalit. The Dylan Reference Manual. Addison
Wesley Longman, 1996.

[18] Sho-Huan Simon Tung and R. Kent Dybvig. Reliable
interactive programming with modules. Lisp and Sym-
bolic Computation, 9(4):343–358, 1996.

11

