
An Optimized R5RS Macro Expander

Sean Reque

A thesis submitted to the faculty of
Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Science

Jay McCarthy, Chair
Eric Mercer
Quinn Snell

Department of Computer Science

Brigham Young University

February 2013

Copyright c© 2013 Sean Reque

All Rights Reserved

ABSTRACT

An Optimized R5RS Macro Expander

Sean Reque
Department of Computer Science, BYU

Master of Science

Macro systems allow programmers abstractions over the syntax of a programming
language. This gives the programmer some of the same power posessed by a programming
language designer, namely, the ability to extend the programming language to fit the needs
of the programmer. The value of such systems has been demonstrated by their continued
adoption in more languages and platforms. However, several barriers to widespread adoption
of macro systems still exist.

The language Racket [6] defines a small core of primitive language constructs, including
a powerful macro system, upon which all other features are built. Because of this design, many
features of other programming languages can be implemented through libraries, keeping the
core language simple without sacrificing power or flexibility. However, slow macro expansion
remains a lingering problem in the language’s primary implementation, and in fact macro
expansion currently dominates compile times for Racket modules and programs. Besides
the typical problems associated with slow compile times, such as slower testing feedback,
increased mental disruption during the programming process, and unscalable build times
for large projects, slow macro expansion carries its own unique problems, such as poorer
performance for IDEs and other software analysis tools.

In order to improve macro expansion times for Racket, we implement an existing
expansion algorithm for R5RS Scheme macros, which comprise a subset of Racket’s macro
system, and use that implementation to explore optimization opportunities. Our resulting
expander appears to be the fastest implementation of a R5RS macro expander in a high-level
language and performs several times faster than the existing C-based Racket implementation.

Keywords: Macros, R5RS, Optimizations, Expander

ACKNOWLEDGMENTS

Without the support and guidance provided by Dr. McCarthy, this work would

not have been possible. I am also indebted to BYU for providing an excellent learning

environment and culture. I last of all thank my family for being the teachers in the most

important school of my life.

Table of Contents

List of Figures viii

List of Tables ix

1 Introduction 1

1.1 Thesis Statement . 1

1.2 Scheme Macros . 1

1.3 R5RS Scheme . 3

1.4 Problems with Conventional Macro Systems 6

1.5 Related Work . 11

1.5.1 Gensym . 11

1.5.2 Timestamp Expander . 12

1.5.3 Syntactic Closures . 13

1.5.4 Explicit Renaming . 13

1.5.5 Mark/Antimark . 14

1.5.6 Fast Imperative Expander . 15

1.5.7 MetaML and MacroML . 15

1.5.8 Template Haskell . 16

1.5.9 Nemerle . 17

1.6 Optimization Approach . 17

1.7 Summary . 18

2 Explicit Renaming Algorithm 19

iv

2.1 Algorithm Overview . 19

2.2 R5RS syntax-rules . 21

2.2.1 syntax-rules Grammar . 21

2.2.2 Interpreting syntax-rules Definitions 23

2.2.3 Implementation Concerns . 25

2.3 Example Macro Expansion . 26

2.4 Summary . 29

3 Correctness and Performance Verification 30

3.1 Correctness and Performance Tests . 30

3.2 Testing Hardware . 30

3.3 Performance Goals . 31

3.4 Test Programs . 32

3.4.1 CK . 32

3.4.2 Dirty R5RS . 32

3.4.3 Macro Lambda . 33

3.4.4 Prime Numbers and the Sieve of Eratosthenes 33

3.4.5 Fibonacci . 33

3.4.6 Schelog . 34

3.4.7 Monads . 34

3.5 Benchmarked Implementations . 35

3.5.1 Gambit . 35

3.5.2 Chicken . 35

3.5.3 Ikarus . 35

3.5.4 Chez . 36

3.5.5 Racket . 36

3.5.6 Fast Imperative Expander . 36

3.5.7 Other expanders . 36

v

3.6 Initial Benchmark Results . 36

3.7 Summary . 40

4 Optimizations 42

4.1 Data Structure Optimizations . 43

4.1.1 Pattern Matching Environment . 43

4.1.2 Template Regular Identifier Environments 43

4.1.3 Removing the Quote Environment . 44

4.2 Lazy Computation Optimizations . 44

4.2.1 Lazy List Matching . 44

4.2.2 No Match Failure Diagnostics . 47

4.3 Redundant Computation Optimizations . 47

4.3.1 Unsafe Operations . 47

4.3.2 Optimizing body expansion . 49

4.3.3 Template List Rewriting . 50

4.4 Static Analysis Optimizations . 52

4.4.1 Constant Wrapping . 52

4.4.2 Template Pre-expansion . 52

4.4.3 Identifier Analysis . 54

4.5 Other Racket-Specific Optimizations . 56

4.5.1 Racket Keyword Arguments . 56

4.5.2 Hasheq vs Hash . 56

4.6 Optimization Results . 56

4.6.1 Lazy List Matching . 56

4.6.2 Unsafe Operations . 57

4.6.3 No Error Diagnosis . 58

4.6.4 Optimized Body Expansion . 58

4.6.5 Pattern Environment Vectors and Regular Identifier Vectors 59

vi

4.6.6 Quote Environment Removal . 59

4.6.7 Optimized Template List Rewriting 59

4.6.8 Hasheq and Keyword Arguments . 60

4.6.9 Template Pre-expansion . 60

4.6.10 Binding Inference . 60

4.6.11 Final Results . 61

4.7 Summary . 66

5 Conclusions 67

5.1 Current Issues . 68

5.2 Future Work . 68

5.3 Final Thoughts . 69

References 71

vii

List of Figures

1.1 An example showing the use of the ”and” macro with its subsequent expansion. 6

2.1 Explicit Renaming Example . 20

2.2 Simplified let definition and example use . 26

3.1 Initial “Heavyweight” Benchmarks . 38

3.2 Initial “Lightweight” Benchmarks . 39

4.1 R5RS letrec Definition . 46

4.2 Recursive rule of letrec . 46

4.3 Base case of letrec . 46

4.4 Optimized letrec pseudocode . 49

4.5 Specialized Definitions of map and foldr . 51

4.6 An example of template pre-expansion using the assert-eq macro 53

4.7 Definition of glambda from the “dirtier macros” benchmark 55

4.8 Impact of Optimizations on ‘Heavyweight’ Benchmarks 62

4.9 Impact of Optimizations on ‘Lightweight’ Benchmarks 63

4.10 Final “Heavyweight” Benchmarks . 64

4.11 Final “Lightweight” Benchmarks . 65

viii

List of Tables

2.1 Simplified R5RS syntax-rules Grammar . 22

2.2 The Top-level Sub-Patterns, Matched Syntax, and Output Environments . . 27

2.3 Sub-Templates of lambda Template and Their Output Syntax 28

3.1 Benchmark Programs . 37

4.1 Mean and Median Performance Deltas Per Optimization 57

ix

Chapter 1

Introduction

1.1 Thesis Statement

R5RS macro expansion can be optimized to enable the expansion of Scheme programs in a

fraction of the time required by existing implementations.

To support this claim, we implement an optimized R5RS macro expander based on an

existing algorithm. We also show our methods for verifying the correctness and performance

of our expander, and provide our results from benchmarking our expander against other

major Scheme implementations. We show that our macro expander significantly outperforms

all other open source macro expander implementations we tested and is competitive with the

fastest known macro expander, Chez Scheme’s proprietary expander.

1.2 Scheme Macros

Macros systems as a programming language feature have been present in both mainstream

and research languages for decades [20]. Macro systems are usually defined by the following:

1. An abstraction for syntax. This abstraction can be as simple as a sequence of characters

or as complex as a disjoint union encoding of an abstract syntax tree.

2. An abstraction for defining macros, also known as syntax transformers, functions whose

inputs and outputs are syntax objects.

3. A mechanism for invoking macros and making use of the resulting syntax in the

compilation or execution process. Macro invocation is also referred to as macro

1

expansion, and to expand a macro means replace the reference to a macro with the

results of invoking it on its syntax arguments.

Depending on the language, macros are most often used to implement functionality

that is unique to the power of macros and cannot be implemented in the base language itself.

Common uses of macros include:

• Guide compilation through external parameters, such as compile flags or configuration.

One simple example is conditional compilation.

• Change the evaluation semantics of the language. This allows one to, for instance,

define some form of lazy evaluation in an otherwise strict language without requiring

native language support.

• Optimize the program by transforming syntax fragments into forms more easily compiled

to efficient machine code.

• Generate syntax programmatically, such as boilerplate code that can’t be abstracted

over in the base syntax of the host language.

• Define domain-specific constructs and mini-languages, often referred to as DSLs or

domain-specific languages. These languages are often more elegant, readable, and

maintainable to domain experts than the syntax of the base language.

With the power and expressiveness of macro systems comes added complexity. Cor-

rectly manipulating language syntax can prove difficult even in the simplest cases. For this

reason, most research in macros has occured historically in languages with simple grammars,

most notably the Lisp family of programming languages. Also, as with any other tool for

abstraction, debugging, which involves peeling away abstractions to analyze the underlying

low-level details, can be made more difficult by macro systems, which may not provide means

for tracing the original program syntax to its final syntax. Lastly, macros add an extra layer

to the compilation process, complicating other syntax-processing tools such as code editors,

2

IDEs, and quality analysis tools like LINT. In particular, the speed of compilation times

and IDE refresh cycles can be slowed by complex macro systems that require significant

computation time to complete expansion of code.

Racket, a Scheme-derived programming language, is designed with both a simple core

set of language primitives and a powerful, flexible macro system as a foundation on which

to extend the capabilities of the language. Language features that are primitive in other

languages, such as object systems, exceptions, co-routines, lazy evaluation, and asynchronous

code written in synchronous style, are all implemented as libraries on top of the core language,

in part due to the power of its macro system. Perhaps because of its sophistication and power,

the Racket macro system currently suffers from performance issues, and for some programs

macro expansion accounts for the overwhelming majority of program compilation time.

By optimizing the speed of the macro expansion process in Racket, we aim to make

macros more useful as a productive tool in writing software. Because of the size of Racket’s

macro system, we focus on a subset of the system defined by the R5RS standard, also

known as syntax-rules macros. We show that our expander is both functionally correct

and faster than the current Racket expander, as well as all most other major R5RS expander

implementations.

1.3 R5RS Scheme

The word “Scheme” can currently refer to an entire family of programmming languages.

Since the first description of a language called Scheme appeared in 1978, multiple universities

created dialects of the language that diverged so far that researchers began to have difficulty

reading code written using a different dialect. Therefore, in 1984 representatives from different

universities met and published the first revised report on Scheme to provide a specification

that implementations could unify on. Since then, 5 other revised reports have been been

published, and each of these reports is referred to by their publishing order using the notation

RXRS, where X is the number of the revision. For reasons explained later, this proposal

3

focuses on R5RS Scheme [11], or the language specified by the 5th revised report on Scheme.

The Racket language, while derived from Scheme, does not closely conform to any of the

revised reports. It can be thought of as a superset of R6RS with many incompatible changes.

R5RS Scheme defines a minimal homoiconic S-expression based programming language

with a simple but expressive and Turing-complete macro system. In this language, syntax

is represented using the same primitive types available at runtime, namely lists, vectors,

symbols, characters, strings, and numbers. Macros can be defined and associated with a

globally- or lexically-scoped keyword. These macros can then be invoked using the same

syntax for invoking regular procedures at runtime. A simple example macro is the and macro.

This macro implements the short-circuit “and” operator commonly found in programming

languages but generalized to an arbitrary number of arguments. To use the macro, one

invokes it just as if it were an ordinary procedure, i.e (and (< x 5) (> x 0)).

To define an and macro globally for the rest of the program to use, one must place a

define-syntax form at the top level of the program as follows:

(define-syntax and
(syntax-rules ()

((and) #t)
((and test) test)
((and test1 test2 . . .)
(if test1 (and test2 . . .) #f))))

This example binds the macro specified by the syntax-rules expression to the keyword

“and” for the duration of the program. It showcases the syntax-rules system Scheme provides

for defining macros. syntax-rules macros use patterns to match input syntax and templates

to output the resulting syntax. In all syntax-rules forms, all arguments but the first are a

list containing two values, representing a pattern and template respectively. When a syntax-

rules macro is invoked, the macro matches the input syntax to the invocation against each

pattern successively. The template corresponding to the first matching pattern is then used

to create the output syntax for the invocation, and the output syntax is spliced into the

4

program, replacing the syntax corresponding to the macro invocation. If no patterns match

then the macro invocation results in a syntax error.

The above definition of and takes advantage of the fact that Scheme’s if forms are

actually expressions that return the value of the branch taken. In addition, as in most

languages, an if form only evaluates the conditional expression and the appropriate branch

expression, leaving the other branch expression un-evaluated. With these two features an and

expression taking an arbitrary number of arguments can be re-written using if expressions.

Lastly, in Scheme all values but false, written as #f, are considered true, written #t.

Specified in English, an invocation of and returns true if no arguments are provided.

If one argument is provided, that argument is evaluated and its result returned. If more than

one argument is provided, the first argument is evaluated. If it’s value is not false, then the

macro need only process the rest of the argument list recursively. The . . . syntax allows a

single identifier to bind to a variable-length list of values, so that the pattern (and test1 test2

. . .) matches a list beginning with the keyword “and” and containing one or more other

values, the first of which is bound to the identifier test1 and the rest of which are bound in

a list to the identifier test2 . Lastly, identifiers in a template expression whose names are

identical to a pattern identifier in the corresponding pattern expression are replaced with the

value that was bound to that identifier during the matching process.

Given the above information, one can see that the definition of the and macro

above follows this English prose faithfully, matching its arguments and recursively rewriting

the and expression into a series of nested if expressions. This example also showcases the

implementation of a short-circuiting operator, an operator that cannot usually be implemented

in a call-by-value language without both syntactic and runtime overhead.

To correctly expand a program, any Scheme program processor, including a compiler,

interpreter, or syntax analysis tool, must maintain an environment mapping keywords to

syntax transformers. Whenever an expression of the form (<keyword> arguments . . .) is

encountered, the environment must be consulted to see if the keyword corresponds to a

5

(and
(> (+ 1 2) 2)
(not (eqv? ’a ’b))
(string-ci<? "a" "B"))

(a) A simple usage example.

(if
(> (+ 1 2) 2)
(and
(not (eqv? ’a ’b))
(string-ci<? "a" "B"))

#f)

(b) The code after one expan-
sion.

(if
(> (+ 1 2) 2)
(if
(not (eqv? ’a ’b))
(and (string-ci<? "a" "B"))
#f)

#f)

(c) The code after two expansions.

(if
(> (+ 1 2) 2)
(if
(not (eqv? ’a ’b))
(string-ci<? "a" "B")
#f)

#f)

(d) The code after three expan-
sions.

Figure 1.1: An example showing the use of the ”and” macro with its subsequent expansion.

defined macro. If so, the corresponding transformer is invoked with the specified arguments,

and the entire expression is replaced with the results of the transformer invocation. Then,

processing of the program continues with the newly created syntax. In this way, macros can

generate syntax that also invokes macros, potentially recursively.

Figures 1.1a through 1.1d illustrate an expander iteratively converting an invocation

of and to its final form.

1.4 Problems with Conventional Macro Systems

Macros in traditional programming languages like C are often viewed as dangerous and

unwieldy. Unless written carefully, macro definitions in such languages can contain latent

errors that reveal themselves only when activated under certain conditions. To understand

why, we will define several syntax constructs and explain how they can make macros dangerous.

• Free variable: any variable which, in a given block of code, is unbound.

6

• Bound variable: any variable, which, in a given block of code, is bound to a definition

(binding occurrence).

• Binding occurrence: also known as a binding, an expression or statement that binds

one or more variables to a particular denotation or location.

• Capture: a binding occurrence is said to capture a variable if that variable is bound

by the occurrence, or in other words, the denotation of the variable is the denotation

introduced by the occurence.

• Binding scope: the region of code under which a binding occurrence is effective and

can capture variables.

• Environment: a dictionary mapping identifiers to denotations. Binding occurrences

extend environments for the duration of their scope, while global binding occurrences

extend an environment permanently. Some languages, including R5RS, conceptually

have two environments for a program: the global, or top-level, environment, and the

local, or lexical, environment.

In the context of the above definitions, traditional macros are dangerous because they

can introduce new identifiers and binding occurrences, possibly mixing original program

syntax into binding scopes that the user never intended. Macros must be written carefully

as it is possible for users to unwittingly bind variables introduced by a macro, giving them

new meaning and thus changing the overall meaning of the macro. Also, poorly constructed

macros can mistakenly bind original program variables by placing them in binding scopes

that the user never intended.

To summarize, macros look like regular procedure calls and we would like to treat

them that way. In fact, macros for the most part never need to cause side effects or mutate

state, so we would like to be able to treat them as pure functions. However, issues related to

variable capture prevent us from doing so.

7

Referential Transparency and Hygiene

In order to allow macro users to transparently invoke a macro as if it were a pure function,

macros satisfy two important properties that macro facilities of languages like Common Lisp

and C do not: referential transparency and hygiene. These features help reduce the burden

of the macro writer in producing error-free macros and enable macros to be used consistently

and reliably in any part of a program. All standards-conforming implementations of R5RS

Scheme provide macros that satisfy these two properties. Although they can be reasoned

about separately, we will, after defining them, refer to both properties at once as “hygiene”

unless otherwise noted.

Referential Transparency

The first property, referential transparency, means that the free variables in a macro expansion

refer to bindings located in the lexical environment of the macro definition, not in the

environment at the time of macro use. As such, a macro invocation, given the same input,

will always result in the same expansion, regardless of the program location where the macro

is invoked.

The following Common Lisp code illustrates macros that violate referential trans-

parency.

(defun wrap (v) (list v))
(defmacro wrap-macro (v) ‘(wrap ,v))
(wrap-macro 1)
(flet ((wrap (v) (vector v))) (wrap-macro 1))

In the above snippet, the procedure wrap is defined that takes a single value and

returns a list containing that value. Next, the macro wrap-macro is defined that accepts a

value and generates syntax to invoke the wrap procedure on the value, such that this macro

serves as a simple alias for wrap. The return value of the third line is the list (1). However,

in the final line, the return value is the vector #(1).

8

This disparity in results can be explained as follows. The flet form is used to define

a local version of the wrap procedure that wraps a single value inside of a vector. When

the invocation of wrap-macro is expanded into the syntax (wrap 1), the identifier wrap,

which was free in the definition of wrap-macro, is placed into a scope where it is bound

by the locally-defined wrap procedure. The identier is bound to a denotation in the lexical

environment at the site of the macro use, not at the site of the macro definition. This means

that, given the same input, a macro transformer can produce different results, which is usually

undesirable.

A C example that highlights a violation of referential transparency is a macro definition

and use of the trigonometric secant function. Note that C uses the term “function” to refer

to what Scheme and LISP refers to as a “procedure”.

define SECANT(rad) (1 . 0 / cos (rad))
p r i n t f ("%.3f\n" , SECANT(1 . 0)) ;
double cos = 5 ;
p r i n t f ("%.3f\n" , SECANT(1 . 0)) ; // f a i l s to compi le

In this example, at the point of definition of the macro SECANT, the identifier cos is

free and therefore refers to the top-level binding of cos. If the math.h header is imported,

then the top-level binding will be a function. After the first use of the SECANT macro,

however, a local variable cos is defined that shadows the top-level binding. Therefore, the

second invocation of SECANT generates an identifier that refers to the local binding of cos

as a double and subsequently causes a compiler error.

Hygiene

A hygienic macro enforces the rule that a binding occurrence can only bind identifiers created

in the same expansion step as the identifier used in the binding, where all original program

syntax belongs in one expansion step that is unique from all others. One example of a

non-hygienic macro is the following definition of the built-in or procedure as a macro named

macro-or in Common Lisp. The macro-or macro works analogously to the Scheme and

9

macro, described earlier, in that it returns the first argument that is considered “true”, or

otherwise a “false” value, which is the keyword nil in Common Lisp.

(defmacro macro-or (&rest args)
(if args

‘(let ((v ,(car args)))
(if v v (macro-or ,@(cdr args))))
nil))

(macro-or nil 2)
(let ((v 2)) (macro-or nil v))

In this example, macro-or inspects its arguments, stored as a list in the variable

args. If the list is non-empty, it expands to an expression that binds the value of the first list

argument to a variable v. It then places a reference to that binding as the first two arguments

of the final if expression, with the third argument being a recursive invocation of macro-or

on the remaining arguments.

Both invocations of macro-or following its definition should return the value 2.

However, the second invocation returns the value nil. Performing one expansion step on the

second invocation yields the following syntax:

(let ((v nil)) (if v v (macro-or v)))

From this one can see that the expansion introduced a binding of a variable v, and

the identifier v provided by the macro invoker now references this local binding instead of

the intended binding that stored the value 2.

Another interesting example in C is a basic swap macro that exchanges the values of

two variables.

define SWAP(a , b) { typeo f (a) tmp = a ; a = b ; b = tmp ; }
int a = 1 , b = 2 , tmp = 3 ;
SWAP(a , b) ;
SWAP(tmp , a) ;
// expect 3 , 1 , 2
// ac tua l 2 , 1 , 3

In the above example, the two uses of the SWAP macro expand to the following:

10

{ typeo f (a) tmp = a ; a = b ; b = tmp ; }

{ typeo f (tmp) tmp = tmp ; tmp = a ; a = tmp ; }

While the first use of SWAP works as expected, the second does not. In the first

statement of the second expanded block, a new variable tmp is created that is assigned the

value of the tmp variable in the outer scope, or 3. In the second statement, this new tmp

variable is assigned the value of a, or 2. Finally, a is assigned the value of the new tmp

variable, which had just been set to 2. Because of this, instead of swapping the values of

tmp and a, the tmp created by the user never gets assigned a new value and a is only ever

assigned its original value. All of this occurs because the SWAP macro introduces a binding

occurence for tmp that captures uses of the identifier tmp supplied by the user.

1.5 Related Work

Hygienic macro systems are safer to use because they avoid accidental variable capture

between macro-introduced syntax and user-introduced syntax. However, they complicate

the implementation of the macro system, and they must also perform significantly extra

bookkeeping to maintain hygiene. This results in slower implementations and increased

compilation times. We present here an overview of the past research effort dedicated to

designing hygienic macro systems, along with efficient algorithms for their implementation.

1.5.1 Gensym

Common Lisp’s macro system is unhygienic. However, the language provides one construct to

assist in writing hygienic macros in an ad-hoc fashion, the gensym operator, which generates

a unique identifier. With this operator, a macro writer can write a hygienic macro if the

macro generates syntax that only binds identifiers that were created using gensym during

the expansion of the syntax. Such macros, however, are still not referentially transparent, so

that care must be taken by the user when defining lexically-scoped macros with macrolet

that generate free identifiers referring to local bindings. In C, because there is no gensym

11

facility, users often create and use identifiers with long prefixes or suffixes that are hoped to

be globally unique, which, while cumbersome, has a similar effect.

1.5.2 Timestamp Expander

Kohlbecker et. al. proposed a change to naive macro expansion algorithms to satisfy the

hygiene condition [16]. This algorithm works by transforming syntax into a new universe

where every identifier is associated with a timestamp. The timestamps are then used to

distinguish identifiers from different expansion steps. The algorithm works as follows:

1. The expander maintains a global timestamp beginning at zero, and begins by stamping

every identifier in the original program with this value.

2. At the end of each expansion step the expander increments the timestamp and afterwards

traverses the output syntax of the expansion, stamping every freshly-generated identifier

with the new timestamp. All identifiers generated outside the expansion step are

guaranteed to already be stamped.

3. Once finished, the expander brings the resulting program back into the original syntax

universe by unstamping each identifier. The unstamp process renames every bound

identifier with α-conversions so that the resulting syntax has the same meaning it would

have if the timestamps were retained. Unbound identifiers are merely unstamped and

retain their original symbol.

The timestamp expander guarantees that macros cannot create binding occurrences

that bind identifiers from another expansion step. The algorithm does not, however solve

referential transparency because it is still possible for local bindings at a macro use site to

unintentionally bind free identifiers generated by a macro. Also, their algorithm exhibits

O(n2) complexity relative to an unhygienic expander.

12

1.5.3 Syntactic Closures

Bawden and Rees proposed a low-level macro facility for writing hygienic macros [1]. This

system requires the syntax trasnformer to explicitly associate its output syntax elements

with their syntactic environments rather than using the environment at the macro use site.

The system also allows to provide a list of symbols that should be dynamically scoped in

order to allow controlled breaking of hygiene. Syntactic closures also compose and support a

quasiquote syntax for embedding syntactic closures inside other syntactic closures.

Syntax transformers are functions that receive the use-site environment and the use-

site syntax arguments as a regular S-expression. If the transformer wishes to use elements of

the input expression in its output expression, it can tease apart the input syntax as normal

and bind the desired elements to the use-site environment. It can then embed these elements

in its final expression, which may have a different syntactic environment.

This system is amenable to O(n) implementations, allows for writing hygienic macros

by virtue of requiring all binding environments to be made explicit by the macro writer, and

supports controlled hygiene-breaking in like matter. For similar reasons, the system is also

unwieldly compared to unhygienic solutions and requires exposing low-level details about

syntactic environments to the macro writer. More importantly, the system cannot be used to

implement a high-level, automatically hygienic macro system like R5RS’s pattern/template

system because such a system cannot determine what environment to close identifiers under

until macro expansion has already been completed. Any such algorithm must provide a way

to defer the judgement of deciding the denotation for an identifier until expansion has been

completed for that identifier.

1.5.4 Explicit Renaming

Clinger and Rees built on the timestamp expander and syntactic closures to design an

algorithm specifically to implement R5RS-style macros efficiently [3]. At a low-level, the

system associates each syntax transformer with its definition-site syntactic environment.

13

During expansion, the algorithm explicitly renames all identifiers introduced during expansion.

Importantly, it also extends the use-site syntactic environment with bindings for each newly

introduced identifier such that the denotation of the new identifier is identical to the denotation

of the identifier it originated from.

The explicit renaming and use-site binding serves two purposes. First, it enforces

the property that all macro-introduced bindings refer to denotations from the definition-site

environment. Second, it is impossible for binding occurrences, either in the use-site lexical

scope or introduced by the macro itself, to interfere with one another. The explicit renaming

algorithm is therefore fully hygienic, is referentially transparent, and, as with syntactic

closures, always runs in linear time relative to the size of the input program.

The algorithm’s primary weakness compared to unhygienic macros is that it does not

support an automatically hygienic system that also allows for the full use of the runtime

capabilities of the host language. Unhygienic Lisp macros and syntactic closures, by contrast,

allow a macro writer to program macros in the same host language and with the same

libraries that are used to write programs themselves. Clinger and Rees later discovered

through implementing their algorithm that they could easily support a low-level unhygienic

system called explicit renaming.

1.5.5 Mark/Antimark

Dybvig and Bruggeman presented a macro system that also ran in O(n) time and added

the ability to program macros in the host language without losing automatic hygiene or

controlled hygiene-breaking [10]. This algorithm creates a new abstraction for identifiers, like

the timestamp algorithm, but unlike the timestamp expander, this abstraction is the primary

abstraction used for identifiers rather than the temporary one. To implement hygiene, an

identifier is defined as a tuple of a symbolic name, a variable name, and a set of marks.

During different parts of the macro expansion process, marks are added and removed from

identifiers to differentiate between identifiers passed into an expansion and those generated

14

by the expansion itself. Then, substitutions change the variable name of identifiers to fresh

symbols based on their mark sets. The variable name is what is eventually used to maintain

referential transparency and hygiene.

Dybvig and Bruggeman also take advantage of redefining the representation of an

identifier to solve another problem with macro systems, source-object correlation. When

reporting errors in a stack trace or highlighting syntax in an IDE, it is necessary to be able

to associate each piece of syntax with the original program syntax responsible for creating it.

The mark/antimark algorithm makes it trivial to associate source location information with

syntax as it is expanded by annotating expressions with source location information during

the expansion process.

The mark/antimark algorithm is the basis of the current implementation of R5RS

and R6RS macros in Racket, Chez, Ikarus, and other conforming Scheme implementations.

1.5.6 Fast Imperative Expander

When the R6RS macro system was being developed and standardized, the mark/antimark

algorithm provided the initial reference implementation. Later, Van Tonder provided an

alternative, though unpublished, implementation inspired by the explicit renaming system

devised by Clinger and Rees [22]. This algorithm foregoes defining a new syntax representation,

instead eagerly renaming fresh syntax as it is generated.

1.5.7 MetaML and MacroML

MetaML [21] is a programming language designed to generalize macros into a completely

type-safe multi-stage execution environment, meaning that sub-programs can be generated,

typed, and executed even at runtime. MetaML’s primary focus lies in creating a stage-

and type-safe system; if a metaprogram is well-typed, then the programs it generates are

guaranteed to be well-typed. This, also means, however, that metaprogramming is limited

15

to the capabilities of the type system and cannot use the full expressivity of the runtime

language in defining macros.

MacroML [7] builds on MetaML by defining a macro system whose semantics can be

reduced to MetaML semantics. The macro system allows for typesafe, hygienic, generative

macros and allows for the generation of locally hygienic binding constructs by encoding the

binding occurrences a macro creates, as well as the free variables an expression needs to have

bound before it can be used. This technique suffers from the limitation that the type system

must be able to infer this information directly, which in practice means that MacroML only

supports new binding constructs that have the same shape as the existing binding constructs

in the language. As another serious limitation, MacroML only supports generative macros.

It does not support arbitrary decomposition syntax and rearrangement of syntax, as the type

system would be unable to track binding dependency information needed to type the macros

properly.

1.5.8 Template Haskell

Template Haskell [17] also implements a hygienic macro system, employing its type system in

novel ways to accomplish hygiene. At its lowest level, Template Haskell exposes a low-level

unhygienic API by representing Haskell syntax as a strongly-typed AST through Haskell

data records. On top of this system Template Haskell implements Hygiene via a monadic

library, the quotation monad. This monad encapsulates the generation of fresh names and

contains constructors for each low-level data type that lifts the corresponding data type to

the quotation monad. On top of this, Haskell provides a splice operator to allow one to splice

binding occurences into the top level that become visible to the rest of the program, and a

quasiquote operator to make syntax generation feel more natural. Template Haskell foregoes

the full flexibility that Scheme macros offer in defining new binding occurences in order to

feasibly statically type the inputs and outputs of macro invocations.

16

1.5.9 Nemerle

The Nemerle programming language [19] was designed to fuse imperative, object-oriented

concepts prevalent on the .NET CLR with several functional concepts, including automatically

hygienic, high-level and low-level macro facilities. It is one of the most recently designed

languages containing macro systems, and its algorithm borrows heavily from the algorithms

used in Scheme macro systems.

The algorithm follows the timestamp algorithm in every way but two. First, free

identifiers in a Nemerle expression generated by macro expansion refer to the definition-site

environment stored with the macro to implement referential transparency. Second, it uses

the abstraction of identifiers as a tuple of symbols and timestamp integers permanently, so

that it doesn’t need to parse the output of every macro expansion to search for unstamped

identifiers. Instead, whenever a macro constructs new syntax, it must associate a timestamp

with that syntax immediately. This timestamp can be the global timestamp or the timestamp

of another identifier for controlled hygiene-breaking. This means that the algorithm can run

in O(n) time. Nemerle’s hygienic macro system provides similar flexibility and power to

Scheme macros but in a statically typed language. Nemerle does not, however, support an

arbitrarily number of phases of execution per compilation, a requirement for R6RS macros.

Also, Nemerle macros must be compiled separately before they can be used. Overall, the

algorithm appears to be sufficient to serve as a potentially viable alternative for an optimized

R5RS expander.

1.6 Optimization Approach

Our strategy to implement an optimized expander is as follows

1. Implement a full-fledged expander and a benchmark suite.

2. Use manual profiling techniques to develop an intuition for possible performance

bottlenecks.

17

3. Use the results of manual profiling to develop and test optimizations.

We wished to use a statistical or instrumenting profiler to automate the collection

of performance data for our expander. Unfortunately, we attempted to use the available

Racket profiler with little success. The profiler as written cannot measure time spent in

native code, and we found that our expander spent most of its time executing the native

code that implements many core standard library functions. This meant that, in many cases,

the profiler output held little or no value and we were forced to rely on intuition alone in

determining possible performance improvements. Our attempts to use native statistical and

instrumenting profilers also failed to yield useful profiling data.

1.7 Summary

Thus far we have defined macro systems, explained their value in software development, and

showed some of the pitfalls of existing macro systems that limit their widespread adoption.

We have also shown how the R5RS macro system addresses some of these issues through

hygiene and referential transparency, though at the cost of an increased performance burden

on macro expanders. Lastly, we have highlighted the previous body of work dedicated to

developing and improving the performance of hygienic macros systems, including that of

R5RS Scheme.

Our contribution is to show that existing macro algorithms can be optimized to

implement macro expanders that run much more performantly than existing implementations.

We do so by implementing a new expander using an existing algorithm, explicit renaming,

and then showing how the application of several optimizations to our expander can increase

its performance to surpass other existing implementations.

18

Chapter 2

Explicit Renaming Algorithm

We use the explicit renaming algorithm as the basis of our new macro expander

implementation. This algorithm was designed specifically to implement R5RS, or syntax-

rules, macros efficiently. Its advantage is that it is simpler to implement than other more

advanced macro algorithms that are also capable of implementing the more general R6RS

macro system. Choosing this algorithm also allowed us to explore possible optimizations

that are specific to the R5RS specification but that do not generalize to R6RS. Since many

fundamental macros in newer versions of Scheme are still written using a syntax-rules

system similar or identical to that defined by R5RS, optimizing R5RS syntax-rules macros

can yield performance benefits for these Scheme implementations as well.

2.1 Algorithm Overview

The explicit renaming algorithm has at its foundation the concepts of identifiers, denotations,

and environments. As defined earlier, an environment maps an identifier to its meaning, or

denotation. Environments are conceptually immutable; they can be extended or reduced

to create new environments, but never modified in place. For our purposes, we do not use

denotations to distinguish between lexically shadowed variables, but only to distinguish

between identifiers introduced at different macro expansion steps.

Within a given scope, an identifier is unbound if there is no entry in the environment

that maps the identifier to a denotation. Whenever a binding occurrence is encountered, the

environment is updated with a mapping of the bound identifier to a fresh denotation for the

19

Syntax Environment

(let ((x "outer"))
(let-syntax

((m (syntax-rules () ((m) x))))
(let ((x "inner"))

(m))))

()

(let-syntax
((m (syntax-rules () ((m) x))))
(let ((x "inner"))

(m)))

(x → den1:”outer”)

(let ((x "inner"))
(m))

(m → den2:macro, x → den1:“outer”)

(m) (m → den2:macro, x → den3:“inner”)

x.3 (m → den2:macro,
x → den3:“inner”,
x.3 → den1:“outer”)

Figure 2.1: Explicit Renaming Example

scope of the binding. Whenever a macro is invoked, it is passed at least two arguments: the

input syntax for the invocation and the environment at the invocation site. The macro itself

outputs both the resulting syntax and a new environment. The new environment consists of

the old environment updated with mappings for each fresh identifier generated by the macro.

The denotation for each freshly-generated identifier is the denotation of the parent identifier

in the macro definition relative to the environment of the macro definition site.

The explicit renaming algorithm distinguishes between symbols introduced at different

expansion steps by renaming macro-generated symbols as soon as they are introduced into

a program. When introduced, the identifiers share the same denotation with their parent

identifiers as expected, but they have separate entries in the environment table. A binding

can only update one environment entry, which means that a binding can never capture

identifiers introduced at different expansion steps. This satisifies both hygiene and referential

transparency.

20

Without yet delving into other relevant details, we give figure 2.1 to show how explicit

renaming interacts with the step-by-step parsing and macro expansion of a Scheme expression

to maintain hygiene. This example is taken from the original paper [3]. The steps shown in

the figure are as follows:

1. At the beginning, we have a single expression and an empty lexical environment.

2. The top-level let expression introduced one new binding for the identifier x . The

environment is updated with a mapping of this identifier to a fresh denotation, which

stores the value "outer".

3. The let-syntax expression defines a single lexically-scoped macro, m. The identifier is

bound to a new denotation which stores the macro itself.

4. The let expression provide a new binding for x , and the environment is updated

accordingly.

5. The macro corresponding to the identifier m is invoked. The macro specifies to output

a single identifier, x . Instead, a fresh identifier, x.3 , is output. Its denotation is the

denotation of x in the environment in which the macro m was defined, which is den1 .

The value of this variable when evaluated is therefore "outer".

2.2 R5RS syntax-rules

2.2.1 syntax-rules Grammar

Table 2.1 gives a slightly simplified grammar for syntax-rules definitions, which serve as the

only way to define macros in R5RS Scheme. At its core, a syntax-rules definition consists

of a list of pattern/template pairs (along with a literals list that we ignore for our discussion).

A pattern can be one of the following:

• an identifier

• a proper list of patterns

21

<transformer spec> ->
(syntax-rules (<identifier>*) <syntax rule>*)

<syntax rule> -> (<pattern> <template>)
<pattern> -> <pattern identifier>

| (<pattern>*)
| (<pattern>+ . <pattern>)
| (<pattern>* <pattern> <ellipsis>)
| <pattern datum>

<template> -> <pattern identifier>
| (<template element>*)
| (<template element>+ . <template>)
| <template datum>

<template element> -> <template>
| <template> <ellipsis>

<pattern identifier> ->
<any identifier except ‘...’>

<ellipsis> -> <the identifier ‘...’>

Table 2.1: Simplified R5RS syntax-rules Grammar

• an improper list of patterns

• an ellipsis list, which is a proper list containing a sequence of zero or more patterns

followed by a pattern and an ellipsis.

• a datum (string, number, character, or symbol)

A template is also defined recursively. One of the major differences in its grammar is

its handling of ellipses. The possible types of templates are given below:

• an identifier

• a proper list of templates

• an improper list of templates (the tail template cannot be applied to an ellipsis)

• a datum (string, number, character, or symbol)

• a template applied to one or more ellipses

22

2.2.2 Interpreting syntax-rules Definitions

The grammar given in the previous section defines the syntax for syntax-rules definitions. In

this section we explain how to interpret their semantic meaning. A syntax-rules definition

specifies a program or function that accepts a list of syntax and an environment as input

arguments and outputs either a match error or else a piece of syntax and its associated

environment. In turn, each pattern and template defines a sub-program or sub-function.

A pattern function also accepts syntax and an environment as input. It outputs either a

match error or a pattern environment. A template in turn accepts an environment as input

and outputs a new syntax/environment pair. A syntax-rules interpreter could execute a

definition as follows:

1. Match the input syntax against each pattern sequentially until one of the patterns

matches the input syntax. If none match, give up and output an error.

2. Create fresh bindings for each template identifier in the corresponding template that

does not refer to a pattern identifier.

3. Create a new environment that merges the pattern environment returned from the

pattern match with the regular identifier environment created in step 2.

4. Use the template and environment from step 3 to generate the output syntax.

5. Create an output environment that extends the input syntax environment with the new

fresh identifier bindings created in step 2.

6. Return the output syntax from step 4 with the environment from step 5.

At a high level, all that remains is to define how each pattern and template specify a

sub-program for matching or outputting syntax. Patterns, as functions that accept an input

environment and output an error or pattern environment, define sub-programs as follows:

• a pattern identifier returns an environment that maps the identifier to the input syntax.

23

• a literal datum outputs an empty environment.

• a proper list of patterns returns an input error if the input list is not a proper list of the

same length. It matches each sub-pattern against each sub-element of the input syntax.

It returns an error if any sub-matches fail. Otherwise, it returns an environment that is

the union of all environments returned by the sub-matches.

• an improper list of patterns operates similarly to a proper list. It requires the input

syntax to have the same shape and similarly merges it sub-match results.

• an ellipsis list containing n sub-patterns can match an input syntax list if it is at

minimum of length n − 1. The input syntax matches only if its first n − 1 syntax

elements match the first n− 1 patterns in the ellipsis list. All remaining elements of

the input syntax are matched against the final pattern in the ellipsis list. If all matches

succeed, the output environment contains all the merged environments for the first

n − 1 sub-patterns. All ellipsis pattern-match results are also merged into a single

environment mapping identifiers to lists of values, and this environment is merged into

the final result.

Templates define the sub-programs that take environments as input and output new

syntax forms as explained below:

• an identifier looks up its value from the input environment. The value will either come

from a corresponding pattern identifier, or else an identifier freshly-generated for this

expansion step.

• a datum ouputs itself as syntax.

• a template applied to one or more ellipses returns a syntax list based on the length of

the values in the pattern environment corresponding to the identifiers contained in the

template. The identifiers in the template must have corresponding pattern identifiers

that were also applied to ellipses.

24

• a proper list of templates outputs a proper list of syntax values corresponding to the

sub-programs specified by its sub-templates.

• an improper list of templates behaves similarly to a proper list but outputs an improper

syntax list.

2.2.3 Implementation Concerns

Several other issues must also be addressed when designing an implementation for explicit

renaming.

1. A macro expander must parse and track all binding information in a program. In fact,

the parsing and expansion of a Scheme program are interleaved and difficult to separate.

A full macro expander implementation must therefore also include a Scheme syntax

parser.

2. Most R5RS implementations implement a more advanced form of ellipses handling in

templates than is specified in the standard. The extensions to the R5RS in terms of

ellipses in templates were eventually codified in the R6RS standard. We decided to

follow the lead of other R5RS implementations in providing them. In summary, the

extended rules allow more ellipses to apply to a template identifier than the number

applied to a pattern, as long as there is at least one “anchor” identifier in the template

that makes unambiguous how much to replicate the template.

3. The quote form complicates the explicit renaming algorithm. This form converts its

single argument syntax into a runtime value. In order for the form to work properly,

no symbol inside a quote form can be renamed. However, an expander cannot know for

certain beforehand whether a given symbol denotes the quote form. Our implementation

handles this fact by tracking the original identifier of every renamed identifier. Whenever

a quote form is recognized, the expander undoes all renaming of symbols inside the

form.

25

; macro definition

(define-syntax let
(syntax-rules ()

((let ((name val) . . .) body1 body2 . . .)
((lambda (name . . .) body1 body2 . . .)
val . . .))))

; macro invocation

(let
((a 1) (b 2))
(display "adding two numbers\\n")
(+ a b))

Figure 2.2: Simplified let definition and example use

2.3 Example Macro Expansion

To illustrate the execution of the explicit renaming algorithm, we provide in figure 2.2 an

example definition and use of a simplified version of the let macro. The let macro as defined

contains one pattern-syntax pair. The pattern itself is an ellipsis-terminated pattern list

containing two sub-patterns, the pattern ellipsis list ((name val) . . .) and the pattern identifier

body1 , followed by the tail ellipsis pattern, the pattern identifier body2 . The nested ellipsis

pattern itself contains one sub-pattern, which is a pattern list with two pattern identifiers as

sub-patterns. One representation of the parsed syntax tree can be viewed as follows:

(ellipsis-plist
((ellipsis-plist

() ;contains zero sub-patterns before the tail pattern
(plist ((pattern-id name) (pattern-id val))))

(pattern-id body1))
(pattern-id body2))

The invocation of let causes its argument syntax to be packaged as a list and matched

against the pattern as shown above. The match algorithm will first verify that the input

syntax list contains at least two elements. Then it will match the first two syntax elements

26

against the first two sub-patterns in the ellpsis list. Lastly, it will match the tail pattern

against the remaining syntax elements. The top-level sub-patterns, the syntax elements that

each pattern matches against, and the resulting environments are given in table 2.2.

Pattern Matched Syntax Output Environment
((name val) ...) ((a 1) (b 2)) (name → ’(a b), val → ’(1 2))
body1 (display ”adding two numbers\n”) (body1 →

(display ”adding two numbers\n”))
body2 ... ((+ 1 2)) (body2 → ((+ 1 2))

Table 2.2: The Top-level Sub-Patterns, Matched Syntax, and Output Environments

The final pattern environment output by the matcher function is:

(
name → ’(a b),
’val → ’(1 2),
’body1 → ’(display "adding two numbers\n"),
’body2 → ’((+ a b)))

The template corresponding to our pattern is at the top level a template list. Note

that there is no concept of an ellipsis-terminated list in our model of templates, as ellipses

can appear anywhere in a template list, not just at the end as with patterns. Our top-level

list contains exactly two sub-templates, one a template list and the other an ellipsis template

with one ellipsis applied to it and a pattern identifier as its sub-template. The first nested

template list contains a regular identifier lambda, a template list (name . . .), a pattern

identifier body1 , and an ellipsis template body2 The conversion of the template syntax

to our template model can continue to be applied recursively to the remaining sub-template.

We show a parsed representation below.

(tlist
((tlist

((regular-id lambda)
(tlist
((ellipsis-template (pattern-id name) 1)))

(pattern-id body1)
(ellipsis-template (pattern-id body2) 1)))

(ellipsis-template (pattern-id val) 1)))

27

Before rewriting, the expander takes the use environment for our macro invocation and

augments it with the pattern environment returned by the match procedure. Following that

it augments the environment with an environment mapping the regular identifier lambda to

a fresh identifier, which for our example, is lambda.1 . The final environment used for syntax

rewriting is as follows:

(
’name → ’(a b)
’val → ’(1 2)
’body1 → ’(display "adding two numbers\\n")
’body2 → ’((+ a b))
’lambda.1 → ’lambda)

The expander accepts the passed-in environment and constructs a syntax list by

invoking each of its two sub-templates with the same environment. The top-level template

itself is composed of two sub-templates: one that creates a lambda expression and one

that outputs the arguments to be applied to it. Table 2.3 shows the sub-templates for the

lambda template and the syntax they output. The final output syntax for the entire lambda

expressions is: (lambda.1 (a b) (display "adding two numbers\n") (+ a b)).

Template Output Syntax
lambda lambda.1
(name ...) (a b)
body1 (display ”adding two numbers\n”)
body2 ... ((+ 1 2))

Table 2.3: Sub-Templates of lambda Template and Their Output Syntax

The second sub-template corresponds to the tail template of the top-level ellipsis

template. It simply extracts the list of values from the environment keyed to the identifier

val and splices them in after the lambda expression. The final output is therefore:

((lambda.1 (a b) (display "adding two numbers\n") (+ a b)) 1 2)

28

The output environment for this syntax is simply the environment at the macro

invocation site extended with the fresh regular identifier environment created for the output

syntax.

2.4 Summary

The explicit renaming algorithm renames all generated identifiers during a macro expansion

step, at the same time aliasing these identifiers to have the same denotations as their parent

identifiers. Because identifiers from different macro expansion steps hold separate entries

in the denotation environment, newly introduced bindings cannot inadvertently capture

identifiers from different macro expansion steps. Explicit renaming does not interact well

with the quote form. Extra book-keeping is required to undo identifier renaming inside of

quote forms.

In the next chapter, we discuss our methods for verifying expander correctness and

benchmarking expander performance. We then use our benchmarks to identify areas where

our initial explicit renaming-based expander implementation performs well relative to existing

implementations, as well as areas where it struggles. In the subsequent chapter, we give our

optimizations to our expander, along the resulting performance gains.

29

Chapter 3

Correctness and Performance Verification

3.1 Correctness and Performance Tests

We verify the correctness and measure the performance of our expander with a suite of

programs that showcase advance uses of Scheme macros. All of these programs share one

important quality; they perform most or all of their computations as part of macro expansion,

taking advantage of the fact that syntax-rules is Turing-complete. This property of is

valuable for two reasons:

1. Our expander cannot execute Scheme code and we wish to avoid relying on an external

Scheme interpreter to verify the correctness of our expander when possible.

2. We can write relatively small programs that perform non-trivial calculations at expansion

time to stress test our implementation.

We use mostly the same set of programs for verifying both correctness and comparing

the performance of our expander against existing expanders.

3.2 Testing Hardware

We performed all correctness and performance tests on a Dell Vostro 3750 Notebook with

the following specifications:

• Windows 7 SP1 64-bit Operating System

• Intel I5-2410M 2.3 GHz Processor

• 4 GB DDR3 1.333 GHz RAM

30

3.3 Performance Goals

There are two primary use cases we wish to represent with our benchmarks. For the first,

many Scheme source units make light use of macros, mostly by using macros provided by

other libraries or by defining simple syntax extensions. Example of this pattern of usage can

be found in our Schelog and monads benchmarks. For this type of use, an expander will

spend the majority of its time parsing syntax forms and performing simple macro expansions.

A fast macro expander must therefore be able to process Scheme syntax as quickly as possible.

This processing includes handling quote forms, maintaining syntactic environments, handling

binding occurrences, recognizing macro applications, and so on.

Performance for this type of code is important when compiling large code bases, where

thousands or hundreds of thousands of lines of code may get processed at once. Furthermore,

integrated development environments and advanced text editors, which often strive for near

instantaneous edit-time feedback, must expand Scheme code to provide the kind of semantic

analysis typically enjoyed by toolchains for other languages. A fast expander is therefore

essential for such editors to respond in a timely manner to user edits of individual source

units.

On the other hand, we categorize the other major use of Scheme macros to be cases

where macro writers intend to perform non-trivial calculations during the compilation of

a program. These uses, while less common, represent a valid and useful application of the

macro systems. In these cases, an expander will spend less time parsing user syntax forms and

more time matching syntax and generating syntax. A performant expander must therefore

be able to execute all forms of syntax-rules definitions as quickly as possible.

Our suite of benchmarks captures both of these use cases. While we would like to

have access to more large Scheme code bases, the monads and Schelog benchmarks, and to

a lesser extent, the CK benchmark, consitute programs that stress the handling of binding

and quote forms and the general parsing of Scheme syntax. The other benchmarks stress

different permutations of pattern matching and syntax generation.

31

3.4 Test Programs

We provide descriptions for the programs we use to verify and benchmark our expander

below.

3.4.1 CK

CK contains an implementation of a CK abstract machine that is used to implement mutually-

recursive, higher-order applicative macros without resorting to CPS style [14]. As examples,

the program implements the following functions as macros:

• permute: a function that, given a list of values, returns a list of all the permutations

of the original list.

• factorial: computes factorials using a unary encoding of natural numbers.

• delete-assoc: A function that removes an element from an association list given the

key of the element.

3.4.2 Dirty R5RS

Normally, if a macro wishes to capture identifiers in the input expression it must accept

an identifier as an argument and then place that argument in a binding position with the

remainder of the code inside that binding. However, R5RS macros also have the ability to

arbitrarily parse and extract portions of input syntax. Using this knowledge, Al Petrofsky

devised a system whereby a macro digs inside of its argument syntax for specific identifiers

and places them in binding positions. With this technique, the macro invoker does not have

to explicitly specify the identifier(s) it wishes bound and the macro appears to be unhygienic.

Oleg Kiselyov takes this behavior further to implement expansion time environments,

associative data structures that can be operated on at macro expansion time [12]. The library

is designed in such a way that user identifiers are overriden using the extraction pattern by

Petrofsky.

32

This particular program tests unique uses of R5RS hygiene and the ability for macros

to match arbitrary Scheme syntax.

3.4.3 Macro Lambda

The macro-lambda program implements an apply macro that mimics the ability to create

anonymous macros and apply syntax arguments to those macros in much the same way as

one would create and use anonymous procedures [14]. The library properly handles nested

lambdas and variable shadowing as with normal procedures. The apply macro is itself a fairly

complex macro-generating macro, with each invocation of apply generating seven local macro

definitions. In addition, the macro must parse the entirety of the argument syntax to discover

and apply the lambda forms. These properties make it a useful program for verification and

benchmarking.

3.4.4 Prime Numbers and the Sieve of Eratosthenes

Kiselyov built a prototype for a compiler that can translate Scheme code into syntax-rules

code [13]. He then used this compiler to translate a Scheme procedure which uses the sieve

of Eratosthenes to determine whether a number is prime into syntax-rules definitions that

can be executed at expansion time [14]. Since number types do not exist for syntax-rules

macros they are unary-encoded using nested parenthesis.

The algorithm as implemented has O(n2) complexity based on the size of the input

number, so it can be easily modified to require more CPU time. It also heavily stresses an

expander’s ability to parse and apply macro definitions. For instance, computing whether

the number five is prime involves the creation of over 5000 local macros.

3.4.5 Fibonacci

The sieve of Eratosthenes mostly traverses a finite list repeatedly. To see if the results for

Kiselyov’s compiler might vary based on different algorithms, we enhanced the compiler to

33

be able write a program to compute the nth Fibonacci number. We discovered that the

performance results for this program are similar to, but not identical to those obtained by

the sieve program.

3.4.6 Schelog

Dorai Sitarum developed a DSL library in Scheme for coding in the style of Prolog [18],

providing a useful test that our expander works with real-world Scheme programs. Since

Schelog operates at runtime we must make use of an interpreter to test our implementation

with it. However, the library makes heavy use of macros, so that if we feed the output of

expanding a Schelog program into an interpreter we can be confident that our expander is not

generating bad syntax. This form of test, on the other hand, is insufficient to catch certain

classes of errors such as an expander not expanding a program completely.

The library itself makes heavy use of literal identifier patterns, macros that mix

argument syntax with new bindings, and patterns and templates with ellipses, including

forms that require our implementation to go beyond the R5RS standard.

3.4.7 Monads

The monads benchmark is a small library [15] written by Edward Kmett and made available

on github. It provides a DSL for writing monadic-style code in Scheme using Haskell’s “do”

notation. Since such a notation amounts to creating a new binding form, it is implemented

using macros. This library does not provide any opportunity for testable compile-time com-

putation. Instead, it is included to be used as a useful performance benchmark, representing

a simple real-world example of Scheme macro use.

34

3.5 Benchmarked Implementations

To provide a comparison for our expander, We implemented benchmarkable macro expander

applications using several other Scheme implementations. The other expander implementa-

tions are described below.

3.5.1 Gambit

Gambit [5] is an R5RS Scheme implementation designed for performance and portability.

Gambit did not appear to provide an API for fully expanding an entire Scheme program, and

on our system the Gambit pp and ##decompile forms did not work properly, so we used their

load procedure, which both expands and evaluates a Scheme source file. Gambit’s expander

uses a version of the portable syntax expander, an implementation of the mark-antimark

algorithm written to be able to run on any R5RS-compliant Scheme implementation. We

used Gambit version 4.6.2.

3.5.2 Chicken

Chicken Scheme [24] includes both an interpreter and Scheme-to-C compiler for R5RS Scheme

programs and focuses on strong FFI-based integration with the underlying native platform.

Their expander uses an explicit-renaming system as of version 4.6.5.

3.5.3 Ikarus

Ikarus [8] is an incremental, mostly self-hosted R6RS Scheme compiler. Ikarus was the first

public implementation of a large part of R6RS, whose macro system is a superset of R5RS.

Ikarus uses another version of the portable syntax expander [9] designed by Waddell and

Dybvig [23]. We used a source build of Ikarus with the following version: 0.0.4-rc1+ (revision

1870, build 2011-11-22).

35

3.5.4 Chez

Chez [4] Scheme is a proprietary implementation of R6RS Scheme. As such, its current

expander implementation is unknown. Its runtime interpreter, Petite Chez, is available for

free and is bulit from the same sources as the Chez compiler. We used version 8.4.

3.5.5 Racket

Racket [6] is a Scheme-derived programming language that provides both R5RS and R6RS-

compliant interfaces as sub-languages. We used Racket’s expand-top-level-with-compile-time-

evals form to expand s-expressions. The Racket interpreter implements its macro expander

using a C-based implementation of the mark-antimark algorithm. We used Racket version

5.2.1.

3.5.6 Fast Imperative Expander

As far as we are aware, no Scheme implementation uses the “fast imperative” algorithm for

macro expansion. We benchmark its reference implementation using both Racket and Petite

Chez.

3.5.7 Other expanders

We attempted to benchmark Bigloo but its expander had several major flaws that rendered

it incapable of correctly expanding many of the benchmarks. Furthermore, the interpreter

had a flaw that prevented its use on Windows with all versions we tried, including versions

3.6, 3.7, and 3.8.

Table 3.1 summarizes the information for all benchmarked expander implementations.

3.6 Initial Benchmark Results

36

Expander Version Standard Algorithm
Optimized Explicit Renaming N/A R5RS explicit renaming
Gambit 4.6.2 R5RS mark-antimark
Chicken 4.6.5 R5RS explicit renaming
Ikarus 0.0.4 R6RS mark-antimark
Chez 8.4 R6RS unknown
Racket 5.2.1 R6RS mark-antimark
Fast Imperative
Reference Implementation N/A R6RS Fast Imperative

Table 3.1: Benchmark Programs

37

Figure 3.1: Initial “Heavyweight” Benchmarks

38

Figure 3.2: Initial “Lightweight” Benchmarks

39

Figures 3.1 and 3.2 show the benchmark results comparing all expanders against

our initial implementation of an optimized explicit renaming-based expander. We label our

expander as “Optimized CR”. This represents our first attempt at writing an expander, with

correctness as our primary focus. The Chez expander performs the best by a large margin.

For the benchmarks representing significant macro-level computations, which we have labeled

as “heavyweight”, our expander already outperforms all other expanders. The next most

performant expander in all but one of these is Chicken, which also uses explicit renaming.

This provides some empirical evidence that the explicit renaming algorithm provides a good

base for writing a fast R5RS expander.

The remaining benchmarks, which we have dubbed as “lightweight”, represent pro-

grams for which macro expansion does not necessarily dominate compile times. Instead,

much of the time is spent, for instance, simply parsing Scheme expressions that are not macro

invocations. In these benchmarks, our initial expander fares worse. Our expander gives a

relatively mediocre performance for the CK and Schelog benchmarks and barely avoids last

place on the monads benchmark.

3.7 Summary

We developed a suite of seven Scheme programs to use as input to our expander to verify its

correctness. We used these same programs to create a benchmarking suite to measure the

performance of our expander and identify potential performance bottlenecks. We set up and

benchmarked several other expander implementations against this same suite to rank our

expander against them.

Our results show that our initial expander already performs exceptionally well on

benchmarks that heavily stress the expander by performing computations for algorithms such

as the sieve of Eratosthenes. For other benchmarks that make less exotic use of our expander

and whose parse times are less dominated by the expansion phase, our expander appears

40

average at best. In the next chapter, we show how we improve our expander to significantly

outperform all other open source Scheme macro expanders.

41

Chapter 4

Optimizations

Our initial benchmarking confirmed that we had implemented a functional R5RS

expander with above-average performance. To show that R5RS macro expansion can be

optimized to run in a fraction of the time required by existing implementations, we applied

a series of optimizations that, when combined, improved the overall performance of our

expander by almost an order of magnitude.

The optimizations we applied to our expander can be roughly grouped into four

categories:

1. Data structures. This denotes either a change in the data structures used, or a

change in their overall shape, along with any associated adjustments to the algorithm.

2. Lazy Computation. Avoid performing work until it is needed, especially if there is a

chance that the work may not be needed at all.

3. Removal of redundant computation. Avoid performing redundant computations,

including those related to error handling, constraint checking, or algorithm-specific

computations.

4. Static analysis of syntax-rules definitions. Optimize macro expansion by analyzing

and altering macro definitions prior to using them.

We discuss each of our optimizations in turn, organized into these categories.

42

4.1 Data Structure Optimizations

4.1.1 Pattern Matching Environment

Conceptually, a pattern matcher function, given a syntax element and its environment,

returns either an error or an environment mapping pattern identifiers to matched syntax

elements. We initially implemented this behavior as directly as possible using Racket’s core

data structures. Environments were represented as functional hashes and identifiers as Racket

symbols. Given the observation that we know at syntax-rules definition-parsing time the

exact number of pattern identifiers in a pattern, we can model our environment differently to

improve performance.

When compiling a pattern into a procedure, we first map every unique pattern

identifier in the pattern to an incrementing number starting at zero. We then redefine a

match procedure to accept a third argument, a vector of length n, where n is the number of

unique pattern identifiers in the pattern. In this way, each cell of the vector corresponds to a

pattern identifier in the pattern. A match procedure returns only a value indicating whether

the match was a success or failure. If the match was a success, then the vector is modified to

include matched syntax elements.

The only source of complication comes from ellipsis patterns, since they match the

same identifiers multiple times. For these patterns the vector cells corresponding to the

pattern identifiers in the pattern hold lists of values, and the ellipsis matcher accumulates

matched elements onto the lists.

4.1.2 Template Regular Identifier Environments

Once we converted our pattern environment representation into a vector, we modified the

template procedure code, which originally expected a hash composed of both the pattern

matches and the fresh identifier mappings created for all the regular identifiers in the template.

43

Instead, we modified it to take in two vectors, one representing the pattern identifiers and

the other the fresh identifiers generated for the template’s regular identifiers.

4.1.3 Removing the Quote Environment

The expander has to maintain a separate environment to support the quote form. Identifiers

inside a quote form that were generated by a macro invocation must be restored to the value

of the identifier in the unexpanded source program from which they originated. Each time a

fresh identifier is generated, we therefore track its originating identifier in case it ends up

inside a quote form.

We believed that merging the use environment and the quote environment into one

would result in better performance due to the fact that a cons allocation should be less

expensive than the allocations required to update a functional hash. To this end, we changed

the definition of the use environment from a map of identifiers to denotations into a map of

identifiers to a two-tuple of denotation and originating identifier.

4.2 Lazy Computation Optimizations

4.2.1 Lazy List Matching

Pattern lists represent trees of patterns, and our implementation compiles them into trees of

procedures of the same shape as their original syntactic forms. Tree-shaped match procedures

delegate to child procedures and then reduce the results of invoking these procedures into a

single value.

Our initial implementation of compound patterns computed all sub-results for a

pattern before merging the sub-results into a final result. However, it is a common occurrence

that compound pattern matches fail in a non-fatal way. Most macros are written using

multiple patterns/template pairs, and it is often the case that a macro invocation succeeds

even though one or more of its matchers fail to match the input syntax.

44

One example of this is an R5RS macro implementation of the letrec form shown

in figure 4.1. We note here that part of the complexity in implementing letrec is that the

R5RS specification requires that all initial values be evaluated before any are assigned to

the locations for the variables provided by the user. This requirement can only be met in

standard Scheme by assigning these initial values to temporary locations, and the definition

of letrec in figure 4.1 does so by creating a list of temporary variables to match the variables

given by the user. The expressions for the initial values are first evaluated and assigned to

these temporary variables. Once all expressions have been evaluated, they are then assigned

to the locations corresponding to the macro invoker’s variables.

This definition in figure 4.1 contains a recursive component that at each step extracts

a value from one list and adds values to other lists; the base case occurs when the first list is

finally empty. We show the two patterns corresponding to these recursive steps in figures 4.2

and 4.3.

When expanding a letrec form using the definition in 4.1, our macro expander prior

to this optimization would match all sub-expressions in a syntax list before merging the

results into a single value. For this macro, the top-level list in each pattern contains five

sub-expressions, four of which are identical in both the base case pattern and recursive case

pattern. Therefore, during each recursion step, our initial expander will perform several

unneeded matches.

Given these observations, one can potentially reduce the time required to run compound

match procedures by causing them to exit immediately as soon as they discover an error value

returned from one of their child procedures. This avoids otherwise unnecessary comptuation,

since when reducing child match results the error value always takes precedence.

45

(define-syntax letrec
(syntax-rules ()

((letrec ((var1 init1) . . .) body . . .)
(letrec "generate temp names"

(var1 . . .)
()
((var1 init1) . . .)
body . . .))

((letrec "generate temp names"
()
(temp1 . . .)
((var1 init1) . . .)
body . . .)

(begin
(define var1 #f) . . .
(define temp1 init1) . . .
(set! var1 temp1) . . .
body . . .))

((letrec "generate temp names"
(x y . . .)
(temp . . .)
((var1 init1) . . .)
body . . .)

(letrec "generate temp names"
(y . . .)
(newtemp temp . . .)
((var1 init1) . . .)
body . . .))))

Figure 4.1: R5RS letrec Definition

(letrec "generate temp names"
(x y . . .)
(temp . . .)
((var1 init1) . . .)
body . . .)

Figure 4.2: Recursive rule of letrec

(letrec "generate temp names"
()
(temp1 . . .)
((var1 init1) . . .)
body . . .)

Figure 4.3: Base case of letrec

46

4.2.2 No Match Failure Diagnostics

When a macro invocation fails, a user needs diagnostic information to determine the cause of

the failure. We initially wrote our macro expander to report the reasons for match failures

when invoking a macro. However, match failure in R5RS Scheme is an allowable and common

occurence. A macro invocation only fails if all its patterns fail to match the input syntax.

Therefore, the error diagnostic information calculated for each match failure wastes CPU

cycles unless all matches fail.

We can avoid building unnecessary diagnostic information in one of two ways. The

first is by passing a runtime value to the match procedure indicating whether we wish for

diagnostic information on match failure. A second option is to use macros to create two

versions of each match procedure, one that reports diagnostic information and one that

doesn’t. In either scenario, we invoke a macro once, and, if the invocation fails, we then

perform extra work to report to the user the failure’s cause. Since invocation failure leads to

program termination it does not need to be optimized as with partial match failures; thus

the performance penalty for gathering this information is paid rarely.

We chose to do away with diagnostic information entirely, since such information

is not required to explore implementing an optimized expander. However, based on the

implementation ideas given above, we believe the feature can be added with minimal overhead

to the expander.

4.3 Redundant Computation Optimizations

4.3.1 Unsafe Operations

Because all variables in Racket’s type system have the same type, runtime type-checking

that could otherwise be omitted in languages with more powerful type systems is required

for most operations to maintain memory safety. As an example, the implementation of the

procedure car must verify at runtime that its argument is a cons object. User code often

47

must also perform its own type-checking using procedures such as car? or vector? . When a

piece of code performs specific operations on a value depending on its type, it’s type checking

combined with the type checking of built-in procedures leads to redundant and unnecessary

overhead.

As of this writing, the Racket VM does not attempt to optimize away many of these

redundant type checks. However, it does provide a match form to efficiently combine type

checking a value with extracting values from that value based on its type. It also provides

efficient iteration constructs that can outperform procedures like map and foldl . These

constructs are the for forms combined with forms that designate the expected type of iterable

values such as in-list and in-vector . Given these type hints, the for operators can often

more efficiently iterate through data structures than procedures like map while maintaining

memory safety.

Even with the optimized Racket forms, there are cases in our expander implementation

where we know extra information about the types of values being stored in variables that the

runtime isn’t aware of. For instance, we may know that a variable should always hold proper

lists, that two variables hold references to lists of the same length, or that one variable holds

a valid integer index into a vector.

With this information in hand, we wish to avoid runtime memory-safety checking,

including general type checking, list shape checking, and vector bounds checking. Fortunately,

Racket provides unsafe operators corresponding to many memory-safe forms. These forms, if

used improperly, could read from or write to invalid memory locations and result in program

errors. On the other hand, if used correctly, these operators are more efficient than their

memory-safe counterparts. Examples of these unsafe operators are:

• unsafe-car and unsafe-cdr for traversing lists

• unsafe-vector∗ forms for referencing and setting vector cells and retrieving vector lengths

• unsafe-fx forms for performing unsafe arithmetic and comparisons on tagged integers.

48

; This is not a valid R5RS syntax-rules definition

(define-syntax letrec-optimized
(syntax-rules ()

((letrec ((var init) . . .) body . . .)
((lambda (var . . .)
((lambda (tmp-var . . .) (set! var tmp-var) . . .) init . . .)
((lambda () body . . .))) ’undefined . . .))))

Figure 4.4: Optimized letrec pseudocode

4.3.2 Optimizing body expansion

Our expander rewrites define forms at the top of body forms using letrec as shown in the

R5RS specification. Our expander also in general uses syntax-rules definitions of syntax

forms whenever possible, and letrec is implementable as an R5RS macro. The accepted R5RS

macro definition of letrec, while functional, is less efficient than a lower level implementation.

A lower level implementation can more easily rewrite the letrec form into forms that do

not require further expansion, which in, the case of our expander, is the lambda expression.

Such an implementation may also take advantage of full access to the host programming

language to perform optimizations not possible in the language of syntax-rules.

To optimize our implementation of letrec, we therefore devised a low-level macro

system and used it to implement a more performant version of letrec. We discovered after

the fact that this system is very similar to the one devised by Clinger for explicit renaming [2].

In our system, one defines a macro as a regular Racket procedure that accepts a syntax

list and a use environment as its arguments. It in turn returns new syntax and a new use

environment for the syntax.

Figure 4.4 gives a pseudocode definition for our optimized letrec implementation in a

syntax that is identical to R5RS syntax-rules. The reasons this definition will not compile

are as follows:

49

1. Our definition contains an identifier, tmp-var , to denote a list of unique identifiers that

is the same length as the list denoted by the pattern identifier var . We have not defined

the creation of this value explicitly. A pure R5RS syntax-rules implementation must

create this temporarily list through relatively costly recursive macro invocations.

2. We apply an ellipsis to the symbol ’undefined in the last line of our definition, which

would result in a syntax error due to its ambiguity. In this case, we wish to produce

a list of the same length as the list denoted by var that contains the repeated value

’undefined, which would again be costlier in a pure R5RS syntax-rules implementation.

Our actual implementation follows our pseudocode directly, but using our lower-level

macro system. In this system, one must be explicitly hygienic and explicitly referentially

transparent. One does so by only using identifiers that are either provided by the argument

syntax or else are freshly generated. For instance, instead of outputting the lambda identifier

directly, we generate a fresh identifier on each invocation. Our output environment will

contain a mapping from this freshly-generated identifier to the denotation of lambda, which

means that this freshly-generated identifier will be guaranteed to always denote lambda and

never be captured inadvertently to have another meaning.

As a final note to our implementation, to create the list of identifiers for tmp-var

we maintain a cache of symbols that we reuse between letrec invocations to avoid calls to

gensym when possible.

In addition to improving letrec, we also made another simple but effective change. If

a body expression contains no define form, there is no need to rewrite it into a letrec form.

We can instead use the unmodified body expression.

4.3.3 Template List Rewriting

During the rewriting phase, a template list procedure must fuse together the results of

its sub-template procedures. To do so, it maintains a list of connector or fuser functions

corresponding to the list of sub-rewriter procedures, where each element in the list contains a

50

(define (unsafe-map f xs final-value)
(let loop ([xs xs])

(if (null? xs)
final-value
(cons (f (unsafe-car xs)) (loop (unsafe-cdr xs))))))

(define (unsafe-foldr proc init xs)
(let loop ([xs xs])

(if (null? xs)
init
(proc (unsafe-car xs) (loop (unsafe-cdr xs))))))

Figure 4.5: Specialized Definitions of map and foldr

reference to either the cons or the append procedure. The values in the list track whether

the corresponding sub-procedure is for an ellipsis template, whose resulting list value must

be spliced, or any other template, whose resulting value is not spliced.

For template lists that contain no ellipsis templates, the fuser list is unnecessary. We

can simply use a Racket for/list operator or a map procedure. Since this branch of code

is so common, we decided to write an optimized map procedure that relies only on unsafe

operations and is specialized to operate on exactly one list.

Often times a template list will contain an ellipsis template only at the end of the list.

In this case, we can avoid creating and using a fuser list by writing our own map procedure

that, instead of ending a list with the null value, ends the list with the result of an ellipsis

template procedure. We can perform a similar optimization with improper template lists.

When writing our own map procedure, we do not replicate the built-in procedure’s

ability to handle arbitrary arity procedures and number of argument lists. We also skip

type-checking that the input value is a proper list. We similarly write an optimized unsafe-

foldr procedure, which our list fuser function still relies on for the common case where a

template contains one or more ellipsis templates in a non-tail position. The definitions of

both procedures are given in figure 4.5.

51

4.4 Static Analysis Optimizations

4.4.1 Constant Wrapping

In our expander, templates are represented in memory as tagged discriminated unions, as

is common for representing heterogeneous tree-like data structures. We noticed that, for

one benchmark, our expander was spending the majority of its time allocating and freeing

memory. This benchmark represented numbers using a Peano encoding based on nested

lists, where the value of a number was the depth of the list. The benchmark also included

a macro-generating macro with peano-encoded numbers in the templates. Parsing such

macros involved wrapping these nested lists in tagged structs recursively, requiring n memory

allocations, where n is the depth of the list. To avoid this excessive memory pressure, we

opted to avoid wrapping constant values, including string, number, and character literals and

lists of the same.

4.4.2 Template Pre-expansion

Based on the structure of the template language, we can sometimes infer the use of identifiers

using static analysis. For macros that generate identifiers which provably also refer to macros,

we can attempt to pre-expand the template statically, constrained to what we can reason

about the pattern identifiers that are in the macro definitions. The most major limiting

factor comes from the fact that pattern identifiers can refer to arbitrary syntax forms. Ellipsis

patterns and templates provide another source of variability that cannot be resolved statically.

Figure 4.6 provides an example of a possible template pre-expansion via static analysis

using macro definitions taken from the monads benchmark. As shown in the figure, the

assert macro can be used to test program invariants and print a warning to the console when

invariants are not met. The assert-eq macro simply rewrites itself into a use of the assert

macro. A static analyzer, upon encountering the definition of this macro, can verify that the

regular identifier assert in the template will always refer to the top-level binding of assert.

52

(define-syntax assert
(syntax-rules ()

((assert proposition)
(when (not proposition)

(begin
(display "Assertion Failed: ")
(display ’proposition)
(newline))))))

(a) Definition of the assert macro

(define-syntax assert-eq
(syntax-rules ()

((assert-eq x y)
(assert (equal? x y)))))

(b) Definition of the assert-eq macro

(define-syntax assert-eq
(syntax-rules ()

((assert-eq x y)
(when (not (equal? x y))

(begin
(display "Assertion Failed: ")
(display (equal? x y))
(newline))))))

(c) assert-eq after static pre-expansion

Figure 4.6: An example of template pre-expansion using the assert-eq macro

If such an analyzer knew the definition of assert, it could rewrite assert-eq by inlining the

body of the appropriate template in assert, as we have shown in the figure.

The analyzer is unfortunately assuming that the user will not rebind assert to another

value later on, which means it is potentially generating an incorrect program. However, a

programmer may decide that the improvement in macro expansion performance may justify

this violation of Scheme semantics, especially if he or she knows that assert will never be

overwritten. Another possible solution to avoid this violation is to create a system where two

versions of a macro are maintained in memory, the original macro and the pre-expanded macro.

The pre-expanded macro is also associated with all the top-level bindings it assumes exists.

when a macro is invoked, these bindings could be compared to the current top-level bindings.

If all necessary bindings are still present, then the pre-expanded macro implementation

may be used safely; otherwise, the original macro could be selected to preserve full R5RS

semantics.

53

Our prototype template pre-expander operates by generating a macro transformer as

normal when encountering a macro definition. However, it wraps this transformer in another

procedure. When invoked, this procedure performs static analysis on the original templates

in the macro, pre-expanding them when possible, and finally generating an optimized version

of the macro to replace the original macro. Lazily optimizing the macro in this manner allows

macros to refer to themselves, and allows macros to reference as-yet undefined macros. By

delaying optimization until the macro is first used, the static analyzer will have both a full

definition of the macro and full definition of all the macros that the macro depends on, and

can therefore use these implementations during template pre-expansion.

When pre-expanding a template, our analyzer tracks new bindings introduced in the

template, giving up on any sections of the template where it cannot statically determine the

exact bindings that are introduced in the new syntax. Whenever the analyzer encounters a

form that it can prove invokes a macro, it attempts to prove which of the templates in the

invoked macro will be selected. If it can with certainty select the appropriate template, it

inlines the contents of that template into the invoking template.

4.4.3 Identifier Analysis

We can attempt other optimizations based on static analysis. For instance, if we can determine

the shape of the binding sites introduced by the macro, we can statically determine which

regular identifiers will eventually revert to their parent identifiers and which will be rewritten

permanently. If no instances of a regular identifier in a macro ever get placed in a binding

position, then all instances of that identifier will be rewritten into the parent identifier from

which they descended. Therefore, no fresh regular identifier need be generated for it. Beyond

avoiding unnecessary fresh identifier generation, we can mark identifiers at expansion time as

already resolved to their final denotation to reduce the number of use environment lookups

during macro expansion. The cost for doing so, unfortunately, is more memory allocations,

as the identifiers must be wrapped so that they can can be tagged. With these tags come

54

(define-syntax glambda
(syntax-rules ()

(((bind-symbol lookup-symbol) ((id ida . . .)) body)
(lambda (temp)

(bind-symbol (((ida . . .) temp)) body)))))

Figure 4.7: Definition of glambda from the “dirtier macros” benchmark

more conditional branches in our primary macro expansion loop, which must handle the new

tags as separate cases.

In figure 4.7, copied from the dirtier macros benchmark, we see an example of a

template for which the boundedness of each regular identifier can be accounted for. The

template for this macro contains mostly pattern identifiers; the only two regular identifiers

are lambda and temp. For the former, we can confidently declare that there is no possible

way for the lambda symbol to ever be placed in a binding position and will therefore always

be free in the output expressions generated by this template. There is as such no need to

generate a fresh identifier each time the macro is invoked.

The first instance of the identifier temp, on the other hand, assuming that lambda

refers to its normal denotation, is guaranteed to be placed in a binding position; the second

instance is also guaranteed to be captured by this binding. We can therefore mark all instances

of this identifier in the output expression so that the expander knows when it encounters

these symbols that it does not need to look up their denotation to see if they need to be

rewritten.

Overall, to improve efficiency, macro static analysis must strike a careful balance in

the amount of effort it spends optimizing macros and intruding on the existing algorithm,

as the cost of the analysis and changes can dwarf the potential performance gains when the

macro is actually invoked.

55

4.5 Other Racket-Specific Optimizations

4.5.1 Racket Keyword Arguments

Our expander originally made use of keyword arguments in several heavily-called procedures.

We assumed that keyword arguments were handled in a phase prior to the runtime phase

of execution. We later learned that this is not the case; there is a runtime overhead to

Racket’s keyword arguments, and we subsequently removed all uses of keyword arguments

from performance critical procedures in the expander.

4.5.2 Hasheq vs Hash

The hashes we use in our expander primarly store symbols only. In Scheme it is much faster

to compare symbols for equality using eq? , so we converted all hash constructors into hasheq

constructors.

4.6 Optimization Results

Table 4.1 shows the mean and median effects of each optimization on benchmark times for our

expander relative to the previous version not including the optimization. They are given in

the same order that they were actually applied to the expander. Most optimizations resulted

in a net performance increase, and most of those yielded significant improvements. The

overall mean runtime reduction for all optimizations suite was 88.70%, or an 8.8x speedup.

We discuss the effect of each optimization on the benchmark results in turn.

4.6.1 Lazy List Matching

Lazily matching sub-lists resulted in a minor net improvement on performance. We manually

added log statements to discover that, in the course of running all benchmarks, a total of over

250,000 list matcher function applications occur that result in a match error. Of these, about

38,500, or 15.3%, terminate earlier because of lazy list matching. On average, lazy matching

56

Optimization Mean Change Median Change
lazy list match -1.79% 0.00%
optimized/unsafe ops -19.86% -12.82%
no error diagnosis -25.75% -24.41%
optimized body expansion -13.42% -3.30%
pattern env vectors -39.93% -43.18%
regular identifier vectors -21.42% -20.00%
quote env merge -18.46% -19.05%
optimized template list rewriting -16.29% -19.35%
hasheq -7.02% -4.10%
no keyword args -11.96% -10.34%
pre-expand templates 8.11% 9.24%
binding inference 4.73% -1.23%
best overall -87.05% -87.03%

Table 4.1: Mean and Median Performance Deltas Per Optimization

resulted in over 50% less sub-match functions being called inside a list matcher that fails to

match. Lastly, about 39% of all list match function calls result in a match failure.

Based on the above numbers, we can see that pattern list match failures are a fairly

common occurrence. However, overall, only about 6% of all list match calls result in a match

failure that occurs before the last pattern element, which means that we would expect based

on these numbers alone to avoid only about 3% of all match calls inside a list through lazy

matching. Indeed, if we count the total number of sub-matcher invocations, only 3.3% of all

possible match procedure invocations are avoided due to lazy list matching. This information

explains the overall modest performance increase resulting from this optimization.

4.6.2 Unsafe Operations

Using Racket’s optimized matching and looping constructs, along with unsafe list and vector

operations, resulted in a 13% average decrease in benchmark run times. It is difficult to

analyze the reasons for this performance increase without delving into the actual JIT-generated

executed assembly code. As this optimization specifies no algorithmic or data structure

changes in the expander itself, we do not investigate it further. It does show that avoiding

57

runtime safety checks imposed by a high-level language can yield a significant performance

improvement.

4.6.3 No Error Diagnosis

Measuring the precise impact of Racket match error diagnosis through Racket’s statistical

profiler proved very difficult. The profiler does not measure time spent in native code, and

most of the cost of error diagnosis code lies in Racket’s core string formatting procedures

that are implemented with native code. Therefore, the decision to disable all such code was

based on intuition alone. These string formatting functions in general are used to render

potentially complex syntax elements into strings.

The optimization, however, yielded one of the best performance increases of all our

attempted optimizations. We logged over 250,000 match failures occur over the course of

running our benchmarks. Overall, the optimization saved 3.67 seconds total, which means that

each string formatting operation required approximately 15 microseconds to complete. After

further analysis, we discovered that, of these 3.67 seconds, almost 90% is spent converting

Racket structs and lists into strings. This means that, if one does not wish to design a system

where user-friendly match failure diagnosis is delayed until a separate step, one may be able

avoid most of the costs of doing unnecessary error diagnosis through the use of a simple

runtime delay mechanism such as closures.

4.6.4 Optimized Body Expansion

Optimized body expansion yielded an average 13.4% reduction in benchmark runtimes, but

only a median 3% reduction. This large difference between the mean and median performance

gains suggests that the optimization disproportionately effects the benchmarks, which is

indeed the case. Optimizing letrec had the effect of halving the runtime of the monads

benchmark, which makes extensive use of letrec forms and local define forms. The other

benchmarks eschew the use of both constructs almost entirely.

58

The second optimization, avoiding a letrec rewrite when possible, once again halved

the runtime of the monads benchmark. In addition, it also slightly improved the performance

of several other benchmarks.

4.6.5 Pattern Environment Vectors and Regular Identifier Vectors

The hash-to-vector optimization halved the execution time of the majority of the benchmarks.

Simple logging statements revealed that this optimization converted over five million hash

lookups to vector lookups and over 3 million hash updates to vector updates. This, however,

accounts for a relatively small proportion of the speedup. The remaining difference is most

likely caused by reduced GC pressure and from avoiding repeatedly iterating over all elements

in a hash.

While less dramatic an improvement, the regular identifier environment vector opti-

mization also yielded a significant 20% drop in benchmark runtimes for similar reasons.

4.6.6 Quote Environment Removal

As this optimization involves again a decreased use of hash operations, it likewise again

illustrates the relatively high cost of using hashes in Racket. Switching from updating two

hashes to updating one hash with a pair of values resulted in an 18% average reduction in

benchmark times.

4.6.7 Optimized Template List Rewriting

The optimizations for list rewriting yielded another significant improvement. We list each of

the three sub-optimizations applied below and their average effect on benchmark runtimes

when each is added cumulatively.

• Optimized foldr for general template lists: -14.2%.

• Optimized map for lists with no ellipsis templates: -2.3%.

59

• Optimized map for lists with one ellipsis template at the tail position: -1.8%.

To summarize, the majority of speedup from this optimization came not from opti-

mizing based on the absence of ellipses in a list but by using an unsafe version of foldr for

fusing the output lists together in the general case.

4.6.8 Hasheq and Keyword Arguments

Our final successful optimization attempts are both Racket-specific. Our environments are

represented as hashes with symbols for keys, which can be compared for equality using

pointer equality. Choosing this version of equality when constructing our hashes resulted

in a 7% average reduction in benchmark times. We also verified that there is a significant

runtime overhead to keyword arguments, and, by removing them from the expander’s main

procedures, average benchmark times were reduced by a further 11%.

4.6.9 Template Pre-expansion

After applying our pre-expansion optimization, we measured that our expander spends less

than ten milliseconds pre-expanding templates over the course of running all benchmarks,

which shows that the pre-expansion algorithm itself introduces minimal overhead. However,

in our prototype implementation we added a layer of indirection in key locations in the code

to support optimized macros. The implementation also creates two versions of each macro,

one to expand normal syntax and one to expand templates. Finally, when optimizing a

template one has to create a third macro, the final optimized macro for normal syntax. On

the other hand, the optimized macros did not yield an appreciable increase in performance

to make up for this overhead, resulting in a net performance loss.

4.6.10 Binding Inference

A similar story holds for binding inference. While it helps prevent in some cases some hash

lookups and updates, it adds overhead in two key areas. First, each symbol whose scope

60

is inferred must be wrapped inside a struct that serves as a tag, resulting in more memory

allocations. Second, all other code that handles symbols must handle these tagged variants,

including pattern matching logic in the expander’s main loop. Overall, the costs associated

with this optimization outweighed the benefits.

4.6.11 Final Results

Figures 4.8 and 4.9 show the incremental effect of each applied major optimization attempt

on the individual benchmarks. For the most part, each optimization resulted in a cumulative

reduction in runtimes up to the last two attempted optimizations. The notable exception to

this is lazy list matching: this benchmark yielded a very minimal overall speed increase and

in several benchmarks resulted in a speed decrease. Optimizations were more likely to have

no impact at all in the lightweight benchmarks. This illustrates that these benchmarks are

smaller and provide less coverage over the code base of an expander.

Figures 4.10 and 4.11 compare our optimized expander against the other expanders.

The figures show that our expander is now competitive with the C-based Chez expander.

The mean relative benchmark time of our expander compared to Chez’s is 1.11. The relative

runtime of the entire suite of benchmarks, 1.57, is less meaningful, as the run time of the

suite is dominated by a single benchmark, the Fibonacci test. The geometric mean runtime

of our expander relative to Chez is 1.0, suggesting that our optimized expander is very close

to Chez for these benchmarks.

61

Figure 4.8: Impact of Optimizations on ‘Heavyweight’ Benchmarks

62

Figure 4.9: Impact of Optimizations on ‘Lightweight’ Benchmarks

63

Figure 4.10: Final “Heavyweight” Benchmarks

64

Figure 4.11: Final “Lightweight” Benchmarks

65

4.7 Summary

Given that compiled C programs are often benchmarked to be several times faster than

equivalent programs written in Racket, we consider our optimized expander to successfully

show that R5RS macro expanders can be optimized to run in a fraction of the time required

by existing expanders. We also believe that it will be easier to experiment with further

optimizations in the future, and to reuse portions of the expander to try new expansion

algorithms because it is written in a higher level language. The expander itself is designed

for reuse with separate components for the explicit renaming expansion algorithm, the R5RS

top-level parser, and the R5RS initial top-level environment.

66

Chapter 5

Conclusions

R5RS macro expansion is complicated by its requirements for hygiene and referential

transparency. Performant macro expansion, on the other hand, is important for fast compi-

lation times and responsive semantic feedback from tools such as editors and development

environments. Several algorithms have been invented to correctly and efficiently provide

hygienic macro expansion for R5RS Scheme. We developed a suite of benchmarks to profile

the performance of many existing R5RS macro expanders. We also built our own macro

expander as a vehicle to explorer optimized macro expansion.

Our initial implementation of a macro expander revealed that a careful translation of

the explicit renaming algorithm to code could in of itself yield a performant macro expander.

By compiling syntax-rules definitions as hierachical procedures, our first expander, without

any performance tuning, performed better than most other benchmarked expanders on several

benchmarks. Despite this initial success, our expander trailed far behind the Chez expander

and also exhibited poor general parsing performance, as shown in the Schelog and monads

benchmarks. Since parsing and macro expansion are so tightly integrated, poor parsing

performance can negate speed gained from a faster expander.

We discovered through manual logging and code inspection several important bot-

tlenecks in our implementation. By altering our choice of data structures, fine-tuning our

parsing and handling of primitive Scheme forms, and avoiding redundant and unnecessary

computations, we improved the performance of our expander almost tenfold, making it

67

competitive with or better than all other tested Scheme implementations in our benchmark

suite.

Lastly, we experimented with static optimizations applied directly to macro templates.

Our initial foray yielded negative results; our expander’s performance did not improve with

the optimizations we attempted.

5.1 Current Issues

Our expander currently has the unfair advantage that it is highly customized, or narrow

in scope, relative to the some of the other benchmarked expanders which were written to

operate as part of a compiler or interpreter. Some or all of these expanders also provide

source-object correlation and better error diagnostics. A more fair performance comparison

might be derived by integrating our expander with another production-quality interpreter or

compiler.

We failed to find any open source R5RS programs larger than a thousand lines and

the programs we found that made extensive use of macros were generally smaller than other

programs. Larger program examples will provide more insight, both in comparing existing

expanders and in deriving useful optimizations.

5.2 Future Work

Our first high-level optimization was to compile pattern and template expressions into

hierarchical procedures. For standard library macros, and perhaps other macros, even more

perfomant macro procedures might be obtained by developing a system to convert pattern and

template expressions directly into Scheme code that can be evaluated, compiled and stored

in pre-compiled Racket modules. Such a compilation strategy would remove the overhead of

the function pointer indirection incurred through a hierarchy of procedures. This strategy

has the potential to provide many opportunities for manual code inlining.

68

Our initial foray into template pre-expansion yielded a simple prototype that did not

improve expansion performance. We believe that more effort could be spent, first in tracking

performance regressions to prevent optimization from slowing down macro expansion in the

worst case. Then, more effort could be spent developing better algorithms and heuristics,

both for deciding when to apply the optimization and for improving the quality of the

pre-expansion algorithm when applied. The advantage of template pre-expansion is that

it can be applied to any expansion algorithm, not just explicit renaming, as long as its

implementation is designed appropriately.

A second possible optimization route for our expander may come from re-implementing

it in C to take advantage of manual memory management and more optimized data structures.

As an example, there is likely to be a more performant data structure for environments than

Racket’s functional hashes. Also, the resources for local scopes can be cleaned up as soon as

the scope has been fully handled, which cannot be done easily in a garbage-collected langage

like Racket.

Finally, based on our research in existing algorithms, it is possible that the mark/sub-

stitution algorithm could be optimized to improve the speed of R6RS programs, which make

use of a much richer macro system. One possible avenue could be explored by borrowing

ideas from Nemerle’s expansion algorithm.

5.3 Final Thoughts

One of the major productivity gains of higher level languages comes from fast development

feedback cycles. A developer can quickly write code, compile it, and run it to observe its

behavior. The sophisticated macro systems of languages like Racket offer for safer, easier-to-

use macros at the cost of slower compilation times and less responsive tooling. Our efforts

have shown that R5RS macro expansion can be optimized to expand programs in a fraction

of the time required by existing expanders. We believe that there is still much that can be

69

done to improve macro expansion performance for R5RS macros, as well as for the more

advanced R6RS and Racket macro systems.

70

References

[1] Alan Bawden and Jonathan Rees. Syntactic Closures. In Proceedings of the ACM

Conference on LISP and Functional Programming, pages 86–95, 1988.

[2] William Clinger. Hygienic macros through explicit renaming. SIGPLAN LISP Pointers,

4(4):25–28, October 1991. ISSN 1045-3563.

[3] William Clinger and Jonathan Rees. Macros that work. In Proceedings of the 18th

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages

155–162, New York, NY, USA, 1991. ACM. ISBN 0-89791-419-8.

[4] R. Kent Dybvig. Chez Scheme Version 7 User’s Guide. Cadence Research Systems,

2005.

[5] Marc Feeley. Gambit Scheme, July 2012. URL http://dynamo.iro.umontreal.ca/

~gambit/wiki/index.php/Main_Page.

[6] Matthew Flatt and PLT. Reference: Racket. Technical Report PLT-TR-2010-1, PLT

Inc., 2010. URL http://racket-lang.org/tr1.

[7] Steven E. Ganz. Macros as multi-stage computations: Type-safe, generative, binding

macros in MacroML. In Proceedings of the The International Conference on Functional

Programming, pages 74–85. ACM Press, 2001.

[8] Abdulaziz Ghuloum. Ikarus Scheme User’s Guide, 2008. URL http://cs.indiana.

edu/~aghuloum/ikarus/ikarus-scheme-users-guide.pdf.

[9] Abdulaziz Ghuloum and R. Kent Dybvig. Implicit phasing for R6RS libraries. In Proceed-

ings of the 12th ACM SIGPLAN International Conference on Functional Programming,

pages 303–314, New York, NY, USA, 2007. ACM. ISBN 978-1-59593-815-2.

[10] Abdulaziz Ghuloum and R. Kent Dybvig. Portable syntax-case, July 2012. URL

http://www.cs.indiana.edu/chezscheme/syntax-case/.

[11] Richard Kelsey, William Clinger, and Jonathan Rees. Revised 5 report on the algorithmic

language Scheme. ACM SIGPLAN Notices, 33(9):26–76, September 1998. ISSN 0362-

1340.

71

http://dynamo.iro.umontreal.ca/~gambit/wiki/index.php/Main_Page
http://dynamo.iro.umontreal.ca/~gambit/wiki/index.php/Main_Page
http://racket-lang.org/tr1
http://cs.indiana.edu/~aghuloum/ikarus/ikarus-scheme-users-guide.pdf
http://cs.indiana.edu/~aghuloum/ikarus/ikarus-scheme-users-guide.pdf
http://www.cs.indiana.edu/chezscheme/syntax-case/

[12] Oleg Kiselyov. How to write seemingly unhygienic and referentially opaque macros with

syntax-rules. In Scheme Workshop, 2002.

[13] Oleg Kiselyov. Macros that compose: Systematic macro programming. In Proceedings

of the 1st ACM SIGPLAN/SIGSOFT conference on Generative Programming and

Component Engineering, GPCE ’02, pages 202–217, London, UK, UK, 2002. Springer-

Verlag. ISBN 3-540-44284-7. URL http://dl.acm.org/citation.cfm?id=645435.

652699.

[14] Oleg Kiselyov. Low- and high-level macro programming in Scheme, July 2012. URL

http://okmij.org/ftp/Scheme/macros.html.

[15] Edward Kmett. Minimalist Polymorphic scheme-(co)monads, July 2012. URL https:

//github.com/ekmett/scheme-monads.

[16] Eugene Kohlbecker, Daniel P. Friedman, Matthias Felleisen, and Bruce Duba. Hygienic

macro expansion. In Proceedings of the ACM Conference on LISP and Functional

Programming, pages 151–161, New York, NY, USA, 1986. ACM. ISBN 0-89791-200-4.

[17] Tim Sheard and Simon Peyton Jones. Template meta-programming for Haskell. SIG-

PLAN Notices, 37(12):60–75, December 2002. ISSN 0362-1340.

[18] Dorai Sitaram. Programming in Schelog, July 2012. URL http://www.ccs.neu.edu/

home/dorai/schelog/schelog.html.

[19] Kamil Skalski, Michal Moskal, and Pawel Olszta. Meta-programming in Nemerle, 2004.

URL http://nemerle.org/metaprogramming.pdf.

[20] Guy L. Steele, Jr. and Richard P. Gabriel. The evolution of LISP. In Proceedings of

The Second ACM SIGPLAN Conference on History of Programming Languages, pages

231–270, New York, NY, USA, 1993. ACM. ISBN 0-89791-570-4.

[21] Walid Taha and Tim Sheard. MetaML and multi-stage programming with explicit

annotations. Theoretical Computer Science, 248(1-2):211 – 242, 2000.

[22] Andre Van Tonder. SRFI 72: Hygienic macros, July 2012. URL http://srfi.schemers.

org/srfi-72/srfi-72.html.

[23] Oscar Waddell and R. Kent Dybvig. Extending the scope of syntactic abstraction. In Pro-

ceedings of the 26th ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages, pages 203–215, New York, NY, USA, 1999. ACM. ISBN 1-58113-095-3.

72

http://dl.acm.org/citation.cfm?id=645435.652699
http://dl.acm.org/citation.cfm?id=645435.652699
http://okmij.org/ftp/Scheme/macros.html
https://github.com/ekmett/scheme-monads
https://github.com/ekmett/scheme-monads
http://www.ccs.neu.edu/home/dorai/schelog/schelog.html
http://www.ccs.neu.edu/home/dorai/schelog/schelog.html
http://nemerle.org/metaprogramming.pdf
http://srfi.schemers.org/srfi-72/srfi-72.html
http://srfi.schemers.org/srfi-72/srfi-72.html

[24] Felix Winkelmann. Chicken Scheme, July 2012. URL http://www.call-cc.org.

73

http://www.call-cc.org

	Title Page
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Thesis Statement
	1.2 Scheme Macros
	1.3 R5RS Scheme
	1.4 Problems with Conventional Macro Systems
	1.5 Related Work
	1.5.1 Gensym
	1.5.2 Timestamp Expander
	1.5.3 Syntactic Closures
	1.5.4 Explicit Renaming
	1.5.5 Mark/Antimark
	1.5.6 Fast Imperative Expander
	1.5.7 MetaML and MacroML
	1.5.8 Template Haskell
	1.5.9 Nemerle

	1.6 Optimization Approach
	1.7 Summary

	2 Explicit Renaming Algorithm
	2.1 Algorithm Overview
	2.2 R5RS syntax-rules
	2.2.1 syntax-rules Grammar
	2.2.2 Interpreting syntax-rules Definitions
	2.2.3 Implementation Concerns

	2.3 Example Macro Expansion
	2.4 Summary

	3 Correctness and Performance Verification
	3.1 Correctness and Performance Tests
	3.2 Testing Hardware
	3.3 Performance Goals
	3.4 Test Programs
	3.4.1 CK
	3.4.2 Dirty R5RS
	3.4.3 Macro Lambda
	3.4.4 Prime Numbers and the Sieve of Eratosthenes
	3.4.5 Fibonacci
	3.4.6 Schelog
	3.4.7 Monads

	3.5 Benchmarked Implementations
	3.5.1 Gambit
	3.5.2 Chicken
	3.5.3 Ikarus
	3.5.4 Chez
	3.5.5 Racket
	3.5.6 Fast Imperative Expander
	3.5.7 Other expanders

	3.6 Initial Benchmark Results
	3.7 Summary

	4 Optimizations
	4.1 Data Structure Optimizations
	4.1.1 Pattern Matching Environment
	4.1.2 Template Regular Identifier Environments
	4.1.3 Removing the Quote Environment

	4.2 Lazy Computation Optimizations
	4.2.1 Lazy List Matching
	4.2.2 No Match Failure Diagnostics

	4.3 Redundant Computation Optimizations
	4.3.1 Unsafe Operations
	4.3.2 Optimizing body expansion
	4.3.3 Template List Rewriting

	4.4 Static Analysis Optimizations
	4.4.1 Constant Wrapping
	4.4.2 Template Pre-expansion
	4.4.3 Identifier Analysis

	4.5 Other Racket-Specific Optimizations
	4.5.1 Racket Keyword Arguments
	4.5.2 Hasheq vs Hash

	4.6 Optimization Results
	4.6.1 Lazy List Matching
	4.6.2 Unsafe Operations
	4.6.3 No Error Diagnosis
	4.6.4 Optimized Body Expansion
	4.6.5 Pattern Environment Vectors and Regular Identifier Vectors
	4.6.6 Quote Environment Removal
	4.6.7 Optimized Template List Rewriting
	4.6.8 Hasheq and Keyword Arguments
	4.6.9 Template Pre-expansion
	4.6.10 Binding Inference
	4.6.11 Final Results

	4.7 Summary

	5 Conclusions
	5.1 Current Issues
	5.2 Future Work
	5.3 Final Thoughts

	References

