
An Introduction to Quantum Computing, Without the Physics

Giacomo Nannicini
IBM T.J. Watson, Yorktown Heights, NY

nannicini@us.ibm.com

Last updated: August 15, 2017.

Abstract

This paper is a gentle but rigorous introduction to quantum computing intended for
computer scientists. Starting from a small set of assumptions on the behavior of quan-
tum computing devices, we analyze their main characteristics, stressing the differences with
classical computers, and finally describe two well-known algorithms (Simon’s algorithm and
Grover’s algorithm) using the formalism developed in previous sections. This paper does not
touch on the physics of the devices, and therefore does not require any notion of quantum
mechanics.

1 Introduction

Quantum computing is a relatively new area of computing that has the potential to greatly
speedup the solution of certain problems. However, quantum computers work in a fundamentally
different way than classical computers. This introduction aims to explain the basic principles
underpinning quantum computing. It assumes the reader is at ease with linear algebra, and
with basic concepts in classical computing such as Turing machines, and algorithm complexity.

The literature contains many textbooks on quantum computing: a comprehensive reference
is [Nielsen and Chuang, 2002], whereas more modern textbooks that are more accessible to
non-physicists are [Mermin, 2007, Rieffel and Polak, 2011]. However, those books are time-
consuming reads. There are not many short introductions that are truly accessible to non-
physicists: [Rieffel and Polak, 2000] is noteworthy, as it actually uses very little physics.

The approach used in this work is, as far as I am aware, different from the literature in the
sense that it abstracts entirely away from quantum physics: we study a quantum computing
device starting from a small set of assumptions, and rigorously derive the remaining properties.
The assumptions are verified in the real world because of the laws of quantum mechanics, but
it is not necessary to understand why they hold: as long as we are willing to take a small leap
of faith and believe that these assumptions are true, the rest will follow. The exposition in this
work is more formal than in other surveys I am aware of, but for this reason, I like to think
that it is also more mathematically precise.

The quantum computing device is, in abstract terms, similar to a classical computing device:
it has a state, and the state of the device evolves according to certain operations. (It is possible
to assume the presence of a tape and be more formal in defining a device that is the quantum
equivalent of a Turing machine, but there is no need to do so for the purposes of this work.)
This will be described in the next sections.

2 Qubits

To talk about quantum computers we must talk about qubits, that are the quantum counterpart
of the bits found in classical computers: a classical computer has registers that are made up of
bits, whereas a quantum computer has quantum registers that are made up of qubits.

ar
X

iv
:1

70
8.

03
68

4v
1

 [
cs

.D
M

]
 1

1
A

ug
 2

01
7

nannicini@us.ibm.com

2.1 Quantum state: basic definitions

Assumption 1 (single-qubit version). The state of a single qubit is a unitary vector in C2.

Remark 1. If we pick the standard basis for C2 given by the vectors

(
1
0

)
,

(
0
1

)
, then a single

qubit can be represented as α

(
1
0

)
+ β

(
0
1

)
where α, β ∈ C and |α|2 + |β|2 = 1.

To extend this definition to multiple qubits, it is necessary to use tensor products. We first
review the basic definition and properties of the tensor product.

Definition 1. Given two vector spaces V and W over a field K with bases e1, . . . , em and
f1, . . . , fn respectively, the tensor product V ⊗W is another vector space over K of dimension
mn. The tensor product space is equipped with a bilinear operation ⊗ : V ×W → V ⊗W . The
vector space V ⊗W has basis ei ⊗ fj ∀i = 1, . . . ,m, j = 1, . . . , n.

If we choose the standard basis in the origin vector spaces, then the tensor product is none
other than the Kronecker product, which is itself a generalization of the outer product. This is
formalized next.

Definition 2. Given A ∈ Cm×n, B ∈ Cp×q, the Kronecker product A ⊗ B is the matrix D ∈
Cmp×nq defined as:

D := A⊗B =


a11B . . . a1nB
a21B . . . a2nB

...
...

am1B . . . amnB

 .

If we choose the standard basis over the vector spaces Cm×n and Cp×q, then the bilinar operation
⊗ of the tensor product Cm×n ⊗ Cp×q is simply the Kronecker product.

In this paper, we always work with complex Hilbert spaces H of the form Cn, using the
standard basis. With a slight but common abuse of notation, we will therefore use tensor
product to refer to the Kronecker and outer products. We now assume that V ≡ Cm,W ≡ Cn.

Proposition 1. Let A,B : Cm×m, C,D ∈ Cn×n be linear transformations on V and W respec-
tively, u, v ∈ Cm, w, x ∈ Cn, and a, b ∈ C. The tensor product satisfies the following properties:

(i) (A⊗ C)(B ⊗D) = AB ⊗ CD.

(ii) (A⊗ C)(u⊗ w) = Au⊗ Cw.

(iii) (u+ v)⊗ w = u⊗ w + v ⊗ w.

(iv) u⊗ (w + x) = u⊗ w + u⊗ x.

(v) au⊗ bw = abu⊗ w.

(vi) (A⊗ C)∗ = A∗ ⊗ C∗.

Above and in the following, the notation A∗ denotes the conjugate transpose of A, and
given a matrix A, the notation A⊗q indicates the tensor product of A with itself q times:
A⊗q := A⊗A · · · ⊗A︸ ︷︷ ︸

q times

. The same notation will be used for a vector: x⊗q := x⊗ x · · · ⊗ x︸ ︷︷ ︸
q times

.

2

When considering multiple qubits, we have to deal with bases on spaces of different dimen-
sions, and this requires some additional notation. Quantum physics uses the bra-ket notation.
There is an undeniable advantage in the quantum notation in that it puts the most impor-
tant information in the center of the symbols, rather than relegate it to a marginal role in the
subscript or superscript.

Definition 3. For any integers q > 0 and 0 ≤ j ≤ 2q−1, we denote by jBq ∈ {0, 1}q the vector
containing the binary representation of j on q digits.

Definition 4. Given a Hilbert space H ≡ Cn, a quantity ψ ∈ H enclosed in a ket, denoted |ψ〉,
is a vector and can be thought of as a column vector. A quantity φ ∈ H∗ enclosed in a bra,
denoted 〈φ|, is a vector in the dual space, and can be thought of as a row vector that is the

conjugate transpose of φ ∈ H. The standard basis for C2 is denoted by |0〉1 =

(
1
0

)
, |1〉1 =

(
0
1

)
.

Thus, an expression such as 〈ψ|φ〉 is an inner product in the Hilbert space. We can now
properly define the state of a quantum register of size q, restating Assumption 1 in more general
form.

Assumption 1. The state of q qubits is a unitary vector in
(
C2
)⊗q

= C2 ⊗ · · · ⊗ C2.

Remark 2. Given the standard basis for each C2, a basis for
(
C2
)⊗q

is given by:

|0〉q = |0〉1 ⊗ · · · ⊗ |0〉1︸ ︷︷ ︸
q times

= |0Bq〉

|1〉q = |0〉1 ⊗ · · · ⊗ |1〉1︸ ︷︷ ︸
q times

= |1Bq〉

...

|2q − 1〉q = |1〉1 ⊗ · · · ⊗ |1〉1︸ ︷︷ ︸
q times

= |(2q − 1)Bq〉.

The state of q qubits can be represented as: |ψ〉 =
∑2q−1

j=0 αj |j〉q, with αj ∈ C and
∑2q−1

j=1 |αj |2 =
1.

It is important to notice that
(
C2
)⊗q

is a 2q-dimensional space. This is in sharp contrast
with the state of classical bits: given q classical bits, their state is a binary string in {0, 1}q,
which is a q-dimensional space. In other words, the dimension of the state space of quantum
registers grows exponentially in the number of qubits, whereas the dimension of the state space
of classical registers grows linearly in the number of bits.

We now define more formally our ket notation for basis vectors.

• When x ∈ {0, 1}, |x〉1 denotes the corresponding basis vector in C2, and is generally
denoted simply by |x〉. In other words, if the subscript for the ket is omitted, it is
intended to be 1, so that |0〉 = |0〉1 and |1〉 = |1〉1.

• When x is any integer ≤ 21−1, |x〉q is the 2q-dimensional basis vector |xBq〉, i.e. the basis
vector in which x is expressed as a binary string on q digits.

• When x1, . . . , xq are binary digits, |x1x2 . . . xq〉 is the 2q-dimensional basis vector cor-
responding to the binary string x1x2 . . . xq. In other words, a sequence of single digits
enclosed in |〉 should be interpreted as a binary string, rather than a “regular” product.
If a product inside |〉 is necessary, we will denote it by ·.

3

To provide an example of this notation below.

Example 1. Let us write the basis elements of C2 ⊗ C2:

|0〉2 = |0〉 ⊗ |0〉 = |00〉 =


1
0
0
0

 |1〉2 = |0〉 ⊗ |1〉 = |01〉 =


0
1
0
0



|2〉2 = |1〉 ⊗ |0〉 = |10〉 =


0
0
1
0

 |3〉2 = |1〉 ⊗ |1〉 = |11〉 =


0
0
0
1

 .

Thus, the index in the standard basis of the basis element corresponding to tensor product
of basis elements of C2 is given simply by the decimal number corresponding to the binary
string obtained by juxtaposing the index of the basis elements of C2.

2.2 Basis states and superposition

Definition 5. We say that q qubits are in a basis state if their state |ψ〉 =
∑2q−1

j=0 αj |j〉q is such
that ∃k : αk = 1, αj = 0 ∀j 6= k. Otherwise, we say that they are in a superposition.

Example 2. Consider two qubits:

|x〉 = α0|0〉+ α1|1〉
|y〉 = β0|0〉+ β1|1〉.

Then, the two qubits taken as a whole will be in state:

|x〉 ⊗ |y〉 = α0β0|0〉 ⊗ |0〉+ α0β1|0〉 ⊗ |1〉+ α1β0|1〉 ⊗ |0〉+ α1β1|1〉 ⊗ |1〉.

If both |x〉 and |y〉 are in a basis state, we have that either α0 or α1 is zero, and similarly
either β0 or β1 is zero, while the nonzero coefficients have modulus one. Thus, only one of the
coefficients in the expression of the state of |x〉 ⊗ |y〉 is nonzero, and in fact its modulus is one:
all other coefficients are zero. This implies that if both |x〉 and |y〉 are in a basis state, |x〉⊗ |y〉
is in a basis state as well. But now assume that α0 = β0 = α1 = β1 = 1√

2
: the qubits |x〉 and

|y〉 are in a superposition. Then the state of |x〉 ⊗ |y〉 is 1
2 |00〉+ 1

2 |01〉+ 1
2 |10〉+ 1

2 |11〉, which is
a superposition as well. Notice that the normalization of the coefficients works out, as one can
easily check with simple algebra: the tensor product of unitary vectors is unitary.

The example clearly generalizes to an arbitary number of qubits. In fact the following
proposition is trivially true:

Proposition 2. For any q, q qubits are in a basis state if and only if each of the individual
qubits is in a basis state.

Notice that superposition does not have a classical equivalent: q classical bits are always
in a basis state, i.e., the q bits will always correspond exactly to one of the 2q binary strings
representing the numbers 0, . . . , 2q − 1. Indeed, superposition is one of the main features of
quantum computers that differentiates them from classical computers. The second important
feature is entanglement, that will be discussed next.

4

2.3 Product states and entanglement

We have seen that the state of q-qubits is a vector in
(
C2
)⊗q

, which is a 2q dimensional space.
Since this is a tensor product of C2, i.e., the space in which single qubits live, it is natural to
ask whether moving from single qubits to multiple qubits gained us anything at all. In other
words, we want to investigate whether the quantum states that are representable on q qubits
are simply the tensor product of q single qubits. We can answer this question by using the
definitions given above. The state of q qubits is a unitary vector in

(
C2
)⊗q

, and it can be
represented as:

|ψ〉 =
2q−1∑
j=0

αj |j〉q,
2q−1∑
j=0

|αj |2 = 1.

Now let us consider the tensor product of q qubits, the j-th of which is in state βj,0|0〉+βj,1|1〉.
Taking the tensor product we obtain the vector:

|φ〉 =
1∑

jq−1=0

1∑
jq−2=0

· · ·
1∑

j0=1

q−1∏
k=0

βk,jk |jqjq−1 . . . j0〉 =
2q−1∑
j=0

q∏
k=1

βk,(jBq)k |jBq〉,

|βj,0|2 + |βj,1|2 = 1 ∀j = 1, . . . , q.

The normalization condition for |φ〉 implies that
∑1

jq−1=0

∑1
jq−2=0 · · ·

∑1
j0=1

∏q−1
k=0 |βk,jk |

2 = 1,

but it is more restrictive than that of |ψ〉. That is, there are values for αj with
∑2q−1

j=1 |αj |2 = 1
that cannot be expressed as coefficients satisfying the conditions for |φ〉.

This is easily clarified with an example using two qubits:

|x〉 = α0|0〉+ α1|1〉
|y〉 = β0|0〉+ β1|1〉.

that taken as a whole will be in state:

|x〉 ⊗ |y〉 = α0β0|00〉+ α0β1|01〉+ α1β0|10〉+ α1β1|11〉,

with the normalization conditions |α0|2 + |α1|2 = 1 and |β0|2 + |β1|2 = 1. The general state of
a 2-qubit register |ψ〉 is:

|ψ〉 = γ00|00〉+ γ01|01〉+ γ10|10〉+ γ11|11〉,

with normalization condition |γ00|2+ |γ01|2+ |γ10|2+ |γ11|2 = 1. Comparing the two expressions,
we see that a |ψ〉 is of the form |x〉 ⊗ |y〉 if and only if it satisfies the relationship:

γ00γ11 = γ01γ10.

Clearly |x〉⊗|y〉 yields coefficients that satisfy this condition. To see the converse, let θ00, θ01, θ10, θ11
be the phases of γ00, γ01, γ10, γ11. Notice that γ00γ11 = γ01γ10 implies:

|γ00|2|γ11|2 = |γ01|2|γ10|2

θ00 + θ11 = θ01 + θ10.

Then we can write:

|γ00| =
√
|γ00|

2
=
√
|γ00|2(|γ00|2 + |γ01|2 + |γ10|2 + |γ11|2)

=
√
|γ00|4 + |γ00|2|γ01|2 + |γ00|2|γ10|2 + |γ01|2|γ10|2

=
√
|γ00|2 + |γ01|2︸ ︷︷ ︸

|α0|

√
|γ00|2 + |γ10|2︸ ︷︷ ︸

|β0|

,

5

and similarly for other coefficients:

|γ01| =
√
|γ00|2 + |γ01|2︸ ︷︷ ︸

|α0|

√
|γ01|2 + |γ11|2︸ ︷︷ ︸

|β1|

|γ10| =
√
|γ10|2 + |γ11|2︸ ︷︷ ︸

|α1|

√
|γ00|2 + |γ10|2︸ ︷︷ ︸

|β0|

|γ11| =
√
|γ10|2 + |γ11|2︸ ︷︷ ︸

|α1|

√
|γ01|2 + |γ11|2︸ ︷︷ ︸

|β1|

.

To fully define the coefficients α0, α1, β0, β1 we must determine their phases. We can assign:

α0 = eiθ00 |α0|, α1 = eiθ10 |α1|, β0 = |β0|, β1 = ei(θ01−θ00)|β1|.

It is now easy to verify that the state |ψ〉 can be expressed as |x〉 ⊗ |y〉 with coefficients
α0, α1, β0, β1 as derived from the expressions above.

Definition 6. A quantum state |ψ〉 ∈
(
C2
)⊗q

is a decomposable if it can be expressed as a
tensor product |ψ1〉 ⊗ · · · ⊗ |ψk〉 of k > 2 quantum states on q1, . . . , qk qubits respectively, with
the property that q1 + · · ·+ qk = q.

Definition 7. A quantum state |ψ〉 ∈
(
C2
)⊗q

is a product state if it is decomposable into the
tensor product of q single-qubit quantum states. Otherwise, it is entangled.

Notice that a general quantum state |ψ〉 could be the product of two or more lower-
dimensional quantum state, e.g., |ψ〉 = |ψ1〉 ⊗ |ψ2〉, with |ψ1〉 and |ψ2〉 being entangled states.
In such a situation, |ψ〉 still exhibits some entanglement, but in some sense it can still be “sim-
plified”. Generally, according to the definition above, a quantum state is called entangled as
long as it cannot be fully decomposed.

Example 3. Consider the following 2-qubit state:

1

2
|00〉+

1

2
|01〉+

1

2
|10〉+

1

2
|11〉.

This is a product state because it is equal to
(

1√
2
|0〉+ 1√

2
|1〉
)(

1√
2
|0〉+ 1√

2
|1〉
)

. On the other

hand, the following 2-qubit state:
1√
2
|00〉+

1√
2
|11〉

is an entangled state, because it cannot be expressed as a product of two single-qubit states.

3 Operations on qubits

Operations on quantum states must satisfy certain conditions, to ensure that applying an op-
eration does not break the basic properties of the quantum state.

Assumption 2. An operation applied by a quantum computer with q qubits, also called a gate,
is a unitary matrix in C2q×2q .

Remark 3. A matrix U is unitary if U∗U = UU∗ = I.

6

A well-known property of unitary matrices is that they are norm-preserving; that is, given
a unitary matrix U and a vector x, ‖Ux‖ = ‖x‖. Thus, for a q-qubit system, the quantum state
is a unitary vector ψ ∈ C2q , a quantum operation is a matrix U ∈ C2q×2q , and the application
of U onto the state ψ is the unitary vector Uψ ∈ C2q . This leads to the following remarks:

• Quantum operations are linear.

• Quantum operations are reversible.

While these properties may initially seem to be extremely restrictive, [Deutsch, 1985] shows that
a universal quantum computer is Turing-complete, implying that it can simulate any Turing-
computable function with an additional polynomial amount of space, given sufficient time. Out
of the two properties indicated above, the most counterintuitive is perhaps reversibility: the
classical notion of computation is typically not reversible, because memory can be erased and, in
the classical Turing machine model of computation, symbols are erased from the tape. However,
[Bennett, 1973] shows that computations can be made reversible by means of extra space. We
will see how this is performed in quantum computers, but in order to do that, we need to
introduce some notation about quantum circuits.

3.1 Notation for quantum circuits

A quantum circuit is represented by indicating which operations are performed on each qubit,
or group of qubits. For a quantum computer with q qubits, we represent q qubit lines, where the
top line indicates qubit 1 and the rest are given in ascending order. Operations are represented
as gates; from now, the two terms are used interchangeably. Gates take qubit lines as input,
have the same number of qubit lines as output, and apply the unitary matrix indicated on the
gate to the quantum state of those qubits. Figure 1 is a simple example.

qubit 3

Uqubit 2

qubit 1

Figure 1: A simple quantum circuit.

Note that circuit diagrams are read from left to right, but because each gate corresponds to
applying a matrix to the quantum state, the matrices corresponding to the gates should be
written from right to left in the mathematical expression describing the circuit. For example,
in the circuit in Figure 2, the outcome of the circuit is the state BA|ψ〉, because we start with

A B|ψ〉 BA|ψ〉

Figure 2: Order of the operations in a quantum circuit.

state |ψ〉, and we first apply the gate with unitary matrix A, and then B.
Gates can also be applied to individual gates. Because a single qubit is a vector in C|2, a

single-qubit gate is a unitary matrix in C2×2. Consider the same 3-qubit device, and suppose
we want to apply the gate only to the first qubit. We would write it as in Figure 3
From an algebraic point of view, the action of first example on the quantum state is clear: the
state of the three qubits is mapped onto another 3-qubit state, as U acts on all the qubits. To

7

qubit 3 U

qubit 2

qubit 1

Figure 3: A circuit with a single-qubit gate.

understand the second example, we must imagine that an identity gate is applied to all the
empty qubit lines. Therefore, the second example can be thought of as indicated in Figure 4.

qubit 3 U

qubit 2 I

qubit 1 I

Figure 4: Equivalent representation of a circuit with a single-qubit gate.

This circuit can be interpreted as applying the U⊗I⊗I to the 3-qubit state |ψ〉. Notice that by
convention U , applied to qubit 3, appears in the leftmost term of the tensor product, because
the basis for C2 ⊗ C2 ⊗ C2 has elements |000〉, |001〉, . . . , |111〉 where by convention we label
qubit 3 the leftmost qubit. In particular, if we have a product state |x〉⊗ |y〉⊗ |z〉, we can write
labels as indicated in Figure 5.

|x〉 |x〉
|y〉 |y〉
|z〉 U U |z〉

Figure 5: Effect of a single-qubit gate on a product state.

This is because (I ⊗ I ⊗ U)(|x〉 ⊗ |y〉 ⊗ |z〉) = |x〉 ⊗ |y〉 ⊗ U |z〉. If the system is in an entangled
state, however, the action of (I⊗I⊗U) cannot be determined in such a simple way, because the
state cannot be factored as a product state. Thus, for a general entangled state, the effect of the
circuit is as indicated in Figure 6. Notice that this fact is essentially the reason why simulation

(I ⊗ I ⊗ U)|ψ〉
U

|ψ〉

Figure 6: Effect of a single-qubit gate on an entangled state.

of quantum computations on classical computers takes exponential space: to simulate the effect
even of a single-qubit gate on the entangled state |ψ〉, we have to explicitly compute the 2q× 2q

matrix (I ⊗ I ⊗ U), and then apply it to |ψ〉. As long as the quantum state is not entangled
computations can be carried out on each qubit independently, but entanglement requires us to
keep track of the full quantum state in 2q-dimensional complex space, leading to large amounts
of memory required.

3.2 Input-output, and measurement gates

We will first note that by convention, the initial quantum state of the quantum computing
device is |0〉q. Any algorithm will have to start from this state. Of course, this does not prevent

8

the algorithm to modify the state and transform it into a more suitable one. Examples of how
this can be done will be seen in subsequent sections. The important part is that if there is any
data that has to be fed to the algorithm, this data will take the form of a circuit that performs
some operation on the quantum state. Therefore, the input to a quantum computing device
is a circuit, or a set of circuits, which are then combined in an algorithm: the algorithm may
be self-contained in the quantum computer, or it may involve an external, classical computing
device that uses quantum computations as a subtroutine. But what is the output of the quantum
computer?

So far we characterized properties of quantum states and quantum gates. Remarkably, the
state of a q-qubit quantum device has dimension 2q, exponentially larger than the dimension
of q classical bits. However, there is a catch: in a classical computer we can simply read the
state of the bits, whereas in a quantum computer we do not have direct, unrestricted access to
the quantum state. Information on the quantum state is only gathered through a measurement
gate, indicated in the circuit diagram in Figure 7.

|ψ〉 M

Figure 7: Single-qubit measurement.

We now formally define the effect of a single-bit measurement.

Assumption 3. Information on the state of a quantum computing device can only be obtained
through a measurement. Given a q-qubit quantum state |ψ〉 =

∑2q−1
j=0 αj |j〉q, a measurement gate

on qubit k outputs 0 with probability
∑

j:(jBq)k=0 |αj |2, and 1 with probability
∑

j:(jBq)k=1 |αj |2.

Let x ∈ {0, 1} be the measured value. After the measurement, the quantum state becomes:∑
j:(jBq)k=x

αj√∑
j:(jBq)k=x

|αj |2
|j〉q.

The original quantum state is no longer recoverable.

Remark 4. The state of the quantum system after a measurement collapses to a linear combi-
nation of only those basis states that are consistent with the outcome of the measurement.

We can now show the following.

Proposition 3. Given a q-qubit quantum state |ψ〉 =
∑2q−1

j=0 αj |j〉q, measuring the q qubits

yields jBq with probability |αj |2, for j = 0, . . . , 2q − 1.

Proof. We need to show that the probability of observing jBq after q single-qubit measurements
is equal to |αj |2. We can do this by induction on q. The case q = 1 is trivial. We now show how

to go from q − 1 to q. In terms of notation, we will write Pr(i
M
= x) to denote the probability

that the measurement of qubit i yields x ∈ {0, 1}. If it is important to indicate the quantum

state on which the measurement is performed, we denote it as Pr|ψ〉(i
M
= x).

Suppose the qubits are measured in an abitrary order π(1), . . . , π(q). After measuring the
first qubit, the quantum state becomes:

|φ〉 =
∑

k:(kBq)π(1)=(jBq)π(1)

αk√∑
k:(kBq)π(1)=(jBq)π(1)

|αk|2
|k〉q :=

∑
k:(kBq)π(1)=(jBq)π(1)

βk|k〉q,

9

where the coefficients βk, as given above, are only defined for k : (kBq)π(1) = (jBq)π(1). Re-
garding the probability of measuring the outcomes, we can write:

Pr
|ψ〉

(
π(1)

M
= (jBq)π(1), . . . , π(q)

M
= (jBq)π(q)

)
=

Pr
|ψ〉

(
π(2)

M
= (jBq)π(2), . . . , π(q)

M
= (jBq)π(q)|π(1)

M
= (jBq)π(1)

)
Pr
|ψ〉

(
π(1)

M
= (jBq)π(1)

)
=

Pr
|φ〉

(
π(2)

M
= (jBq)π(2), . . . , π(q)

M
= (jBq)π(q)

)
Pr
|ψ〉

(
π(1)

M
= (jBq)π(1)

)
.

By the definition of single-qubit measurement, we have:

Pr
|ψ〉

(
π(1)

M
= (jBq)π(1)

)
=

∑
k:(kBq)π(1)=(jBq)π(1)

|αk|2.

By the induction hypothesis:

Pr
|φ〉

(
π(2)

M
= (jBq)π(2), . . . , π(q)

M
= (jBq)π(q)

)
=

∑
k:(kBq)π(h)=(jBq)π(h) ∀h=1,...,q

|βk|2 =
∑

k:(kBq)π(h)=(jBq)π(h) ∀h=1,...,q

|αk|2∑
k:(kBq)π(1)=(jBq)π(1)

|αk|2
,

where the summation is only over indices for which (kBq)π(1) = (jBq)1 by definition of |φ〉.
Carrying out the multiplication, we obtain:

Pr
|ψ〉

(
π(1)

M
= (jBq)π(1), . . . , π(q)

M
= (jBq)π(q)

)
=

∑
k:(kBq)π(h)=(jBq)π(h) ∀h=1,...,q

|αk|2∑
k:(kBq)π(1)=(jBq)π(1)

|αk|2
∑

k:(kBq)π(1)=(jBq)π(1)

|αk|2 =

∑
k:(kBq)h=(jBq)h ∀h=1,...,q

|αk|2 = |αj |2.

The proposition above shows that the two circuits in Figure 8 are equivalent.

M|ψ〉
M

|ψ〉 M

M

Figure 8: Multiple-qubit measurement.

In other words, the single-qubit measurement gate is sufficient to measure any number of qubits
in the most natural way, i.e., the measurement outcomes on the q qubits occur with probability
that is exactly equal to the square of the state coefficients αj .

10

Example 4. Consider again the following 2-qubit state:

α00|00〉+ α01|01〉+ α10|10〉+ α11|11〉 =
1

2
|00〉+

1

2
|01〉+

1

2
|10〉+

1

2
|11〉.

We remarked that this is a product state. Let qubit QR be the qubit on the right (i.e., the second
digit in the two-digit binary strings), and qubit QL the qubit on the left (i.e., the first digit in
the two-digit binary strings). Then:

Pr(QL
M
= 0) = |α00|2 + |α01|2 =

(
1

2

)2

+

(
1

2

)2

=
1

2

Pr(QL
M
= 1) = |α10|2 + |α11|2 =

(
1

2

)2

+

(
1

2

)2

=
1

2

Pr(QR
M
= 0) = |α00|2 + |α10|2 =

(
1

2

)2

+

(
1

2

)2

=
1

2

Pr(QR
M
= 1) = |α01|2 + |α11|2 =

(
1

2

)2

+

(
1

2

)2

=
1

2
.

Suppose we measure QR and we obtain 1 as the outcome of the measurement. Then the state
of the 2-qubit systems collapses to:

1√
2
|01〉+

1√
2
|11〉.

If we measure QL from this modified state, we obtain:

Pr(QL
M
= 0) =

1

2
Pr(QL

M
= 1) =

1

2
.

Hence, the probability of measuring 0 or 1 from qubit QL did not change after the measurement.
Consider now the followin entangled 2-qubit state:

β00|00〉+ β11|11〉 =
1√
2
|00〉+

1√
2
|11〉.

Doing the calculations, we still have:

Pr(QL
M
= 0) = |β00|2 =

1

2
Pr(QL

M
= 1) = |β11|2 =

1

2

Pr(QR
M
= 0) = |β00|2 =

1

2
Pr(QR

M
= 1) = |β11|2 =

1

2
.

Suppose we measure qubit QR and we obtain 1 as the outcome of the measurement. Then the
state of the 2-qubit system collapses to:

|11〉.

If we measure QL from this state, we obtain:

Pr(QL
M
= 0) = 0 Pr(QL

M
= 1) = 1.

The situation is now very different: the probability of the outcomes from a measurement on QL
have changed after measuring QR. This is exactly the concept of entanglement: when two or
more qubits are entangled, they affect each other, and measuring one qubit changes the probability
distribution for the other qubits.

11

3.3 The no-cloning principle

Because measurement destroys the quantum state, it is natural to look for a way to create a
copy of a quantum state, so that several measurements can be carried out without having to
repeat the algorithm. However, it turns out that this cannot be done: a direct consequence of
the properties of quantum gates is that a quantum state cannot be cloned.

Proposition 4. Let |ψ〉 be an arbitrary quantum state on n qubits. There does not exist a
unitary matrix that maps |ψ〉 ⊗ |0〉n to |ψ〉 ⊗ |ψ〉.

Proof. Suppose there exists such a unitary U . Then for any two quantum states |ψ〉, |φ〉 on n
qubits, we have:

U(|ψ〉 ⊗ |0〉n) = |ψ〉 ⊗ |ψ〉
U(|φ〉 ⊗ |0〉n) = |φ〉 ⊗ |φ〉.

Using these equalities, we can write:

〈φ|ψ〉 = 〈φ|ψ〉〈0|0〉n == 〈φ|ψ〉 ⊗ 〈0|0〉n = (〈φ| ⊗ 〈0|n)(|ψ〉 ⊗ |0〉n) = (〈φ| ⊗ 〈0|n)U∗U(|ψ〉 ⊗ |0〉n)

= (〈φ| ⊗ 〈φ|)(|ψ〉 ⊗ |ψ〉) = 〈φ|ψ〉2.

But 〈φ|ψ〉 = 〈φ|ψ〉2 is only true if 〈φ|ψ〉 is equal to 0 or to 1, contradicting the fact that |φ〉, |ψ〉
are arbitrary quantum states.

The above proposition shows that we cannot copy a quantum state. This establishes that we
cannot “cheat” the destructive effect of a measurement by simply cloning the state before the
measurement. Hence, whenever we run an algorithm that produces an output quantum state,
in general we can only reproduce the output quantum state only by repeating all the steps of
the algorithm.

3.4 Basic operations and universality

Existing quantum computing hardware does not allow the user to specify just any unitary
matrix in the code. Quantum gates have to be constructed out of a set of basic gates. We will
now discuss what these basic gates are, and how they can be combined to form other operations.

The first operations that we discuss are the Pauli gates.

Definition 8. The four Pauli gates are the following single-qubit gates:

I =

(
1 0
0 1

)
X =

(
0 1
1 0

)
Y =

(
0 −i
i 0

)
Z =

(
1 0
0 −1

)
.

Proposition 5. The Pauli gates form a basis for C2×2, they are Hermitian, and they satisfy
the relationship XY Z = iI.

The X,Y, Z gates all correspond to 90◦ rotations, around different axes. The X gate flips a
qubit:

X|0〉 = |1〉 X|1〉 = |0〉.

12

This is the equivalent of a NOT gate in classical computers. At the same time, the Z gate is
also called a phase-flip gate: it leaves |0〉 unchanged, and maps |1〉 to −|1〉.

Z|0〉 = |0〉 Z|1〉 = −|1〉.

A single-qubit gate that is used in many quantum algorithms is the Hadamard gate:

H =
1√
2

(
1 1
1 −1

)
.

The action of H is as follows:

H|0〉 =
1√
2

(|0〉+ |1〉) H|1〉 =
1√
2

(|0〉 − |1〉)

Proposition 6. Given a q-qubit quantum device initially in the state |0〉q, applying the Hadamard

gate to all qubits, equivalent to the matrix H⊗q, yields the uniform superposition of basis states
1√
2q

∑2q−1
j=0 |j〉q.

Proof. The state |0〉q can also be written as |0〉⊗q. Therefore we have:

H⊗q|0〉⊗q = (H|0〉)⊗q =

(
1√
2
|0〉+

1√
2
|1〉
)⊗q

=
1√
2q

2q−1∑
j=0

|j〉q.

The multiple Hadamard can be represented by one of the equivalent circuits given in Figure
9

|0〉 H
1√
2

(|0〉+ |1〉)

|0〉 H
1√
2

(|0〉+ |1〉)

|0〉 H
1√
2

(|0〉+ |1〉)

|0〉

H⊗3

1√
2

(|0〉+ |1〉)

|0〉 1√
2

(|0〉+ |1〉)

|0〉 1√
2

(|0〉+ |1〉)

Figure 9: Two representations for multiple Hadamard gates.

In general, since single-qubit gates are unitary matrices, they can be represented by the
following parameterized matrix:

U(θ, φ, λ) =

(
e−i(φ+λ)/2 cos(θ/2) −e−i(φ−λ)/2 sin(θ/2)

ei(φ−λ)/2 sin(θ/2) ei(φ+λ)/2 cos(θ/2)

)
All single-qubit gates can be obtained by an appropriate choice of parameters θ, φ, λ.

Another fundamental gate is the CNOT gate, also called “controlled NOT”. The CNOT
gate is a two-qubit gate that has a control bit and a target bit, and acts as follows: if the
control bit is 0, nothing happens, whereas if the control bit is 1, the target bit is flipped. The
corresponding circuit is given in Figure 10
Here, the ⊕ operation indicates sum modulo 2. The matrix description of the gate with control
qubit 2 and target qubit 1 is as follows:

CNOT21 =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 .

13

•

Figure 10: The CNOT, or controlled-NOT, gate.

We can easily see that the effect of CNOT is as follows:

CNOT21|00〉 = |00〉 CNOT21|01〉 = |01〉
CNOT21|10〉 = |11〉 CNOT21|11〉 = |10〉.

An interesting feature of the CNOT gate is that it can be used to swap two qubits. Considering
that CNOT, as all quantum gates, is a linear map, this may sound surprising. The SWAP can
be constructed as depicted in Figure 11.

• •
•

Figure 11: A circuit that swaps two qubits.

Proposition 7. The circuit above, constructed with three CNOTs, swaps qubits 1 and 2.

Proof. By linearity, it suffices to show that the circuit above maps |00〉 → |00〉, |01〉 → |10〉, |10〉 →
|01〉, and |11〉 → |11〉. We have:

CNOT21CNOT12CNOT21|00〉 = CNOT21CNOT12|00〉 = CNOT21|00〉 = |00〉.
CNOT21CNOT12CNOT21|01〉 = CNOT21CNOT12|01〉 = CNOT21|11〉 = |10〉.
CNOT21CNOT12CNOT21|10〉 = CNOT21CNOT12|11〉 = CNOT21|01〉 = |01〉.
CNOT21CNOT12CNOT21|11〉 = CNOT21CNOT12|10〉 = CNOT21|10〉 = |11〉.

Therefore, the SWAP circuit maps:

α00|00〉+ α01|01〉+ α10|10〉+ α11|11〉 → α00|00〉+ α01|10〉+ α10|01〉+ α11|11〉.

The types of gates that we presented here can be shown to be sufficient to construct any
unitary matrix with arbitrary precision.

Definition 9. An ordered set of gates S that yields the unitary matrix A is an ε-approximation
of a unitary matrix U if supψ:‖ψ‖=1 ‖U −A‖ < ε. A set of gates that yields an ε-approximation
of any unitary matrix on any given number of qubits is called a universal set of gates.

Theorem 1. (Solovay-Kitaev [Kitaev, 1997, Nielsen and Chuang, 2002]) Let U ∈ C2×2 be an
arbitrary unitary matrix. Then there exists a constant c such that there exists a sequence S
of gates of length O(logc 1

ε) that is an ε-approximation of U and consists only of H, Rπ/4 =(
1 0

0 ei
π
4

)
and CNOT gates.

The theorem implies that just two single-qubit gates together with CNOT allow us to build
any single-qubit gate with arbitrary precision. [Dawson and Nielsen, 2005] gives a proof with
c ≈ 3.98. More recent work gives improved algorithm with smaller c, in fact even c = 1 (but

14

different constants), see [Selinger, 2012, Kliuchnikov et al., 2016]. To go from single-qubit gates
to general q-qubit gates, one needs at most O(4q) gates (since each gate on q qubits has 2q × 2q

elements), and the decomposition can be done in terms of single-qubit gates and CNOTs. In
other words, the set of gates consisting of single-qubit gates and CNOT is universal, and in
fact even a restricted set of single-qubit gates (the two gates indicated in the above theorem) is
universal. This shows that with a very small set of basic gates, we can construct any unitary
matrix in any dimension, although this may require many operations.

3.5 Can we solve NP-hard problems?

It is important to remark that even if we can easily create a uniform superposition of all basis
states, the rules of measurement prevent us from using such a superposition to trivially solve
NP-complete problems such as, for example, SAT (the satisfiability problem). Indeed, suppose
we have a quantum circuit Uf that encodes a SAT formula on n boolean variables; in other
words, a unitary Uf : |j〉n⊗|0〉1 → |j〉n⊗|f(j)〉1, where f(j) is 1 if the binary string jBn satisfies
the formula, and 0 if not. We might be tempted to apply H⊗n to the initial state |0〉n to create

the uniform superposition 1√
2q

∑2q−1
j=0 |j〉q, apply Uf to this superposition (which evaluates the

truth assignment of all possible binary strings), and then perform a measurement on all qubits.
But measuring the state:

Uf

 1√
2q

2q−1∑
j=0

|j〉q ⊗ |0〉1

 =
1√
2q

2q−1∑
j=0

|j〉q ⊗ |f(j)〉1

will return a binary string that satisfies the formula if and only if the last qubit has value 1 after
the measurement, and this happens with a probability that depends on the number of binary
assignments that satisfy the formula. If, for example, the SAT problem at hand is solved by
exactly ρ assignment out of 2n possible assignment, then the probability of finding the solution
after one measurement is ρ

2n , and we have done nothing better than randomly sampling a
binary string. Clearly, this is not a good algorithm for SAT. In fact, in general solving NP-hard
problems in polynomial time with quantum computers is not believed to be possible. However,
we will see in the next sections some examples of quantum algorithms that are faster than any
known classical algorithm.

4 A simple period finding problem: Simon’s algorithm

In this section we describe a quantum algorithm that gives an expected exponential speedup
with respect to classical algorithms. Admittedly, the problem that this algorithm solves is not
very useful, but the ideas shown here give us a flavor of what quantum computation can do.

Let ⊕ denote bitwise modulo 2 addition, i.e., bitwise XOR. The problem is as follows. We
are given a function f : {0, . . . , 2n − 1} → {0, . . . , 2n − 1} with the property that f(x) = f(z)
if and only if xBn = zBn ⊕ aBn, for some unknown a ∈ {0, . . . , 2n − 1}. We do not know
anything else about the function, and the goal is to find a. Notice that if a = 0 then the
function is one-to-one, whereas if a 6= 0 the function is two-to-one, because for every x, there is
exactly another number in domain for which the function has the same value. The function f
is assumed to be given as a quantum circuit on q = 2n qubits, depicted in Figure 12
This particular form of the function, that maps |x〉n ⊗ |y〉n to |x〉n ⊗ |y ⊕ f(x)〉n, is typical of
the quantum world. Notice that if y = 0, then |y⊕f(x)〉n = |f(x)〉n so the circuit computes the

15

|x〉n /n
Uf

/n |x〉n
|y〉n /n /n |y ⊕ f(x)〉n

Figure 12: The circuit implementing Uf for Simon’s problem.

desired function. Furthermore, this is a reversible function, because applying the same circuit
Uf goes back to the initial state:

UfUf (|x〉n ⊗ |y〉n) = Uf (|x〉n ⊗ |y ⊕ f(x)〉n) = |x〉n ⊗ |y ⊕ f(x)⊕ f(x)〉n = |x〉n ⊗ |y〉n.

4.1 Classical algorithm

Because we do not know anything about the number a, the best we can do is to feed inputs to
the function, and try to extract information from the output. The number a is determined once
we find two distinct inputs x, z such that f(x) = f(z), because then xBn = zBn ⊕ aBn which
implies xBn ⊕ zBn = aBn.

Suppose we have evaluated m distinct input values and we did not find a match. Then
aBn 6= xBn ⊕ zBn for all x, z previously evaluated, therefore we have eliminated at most
m(m − 1)/2 values of a. (Fewer values may have been eliminated if we test inputs for which
xBn⊕yBn⊕zBn for any three input values x, y, z already tested. In fact, if we test w such that
wBn = xBn⊕yBn⊕zBn, we have that wBn⊕zBn = xBn⊕yBn, therefore the value wBn⊕zBn
had already been eliminated from the list of possible valus of a.) Since m(m − 1)/2 is small

compared to 2n, the probability of success m(m−1)
2n+1 is very small until we have evaluated a number

of inputs that is in the order of 2n. In particular, to guarantee a probability of success of at least
ρ, we need m(m−1)

2n+1 ≥ ρ2n, which implies that m ∈ O(
√
ρ2n). Hence, for any positive constant

ρ, the number of required iterations is exponential. After evaluating
√

2n+1 + 1 ∈ O(2n/2)
distinct input values satisfying the condition outlined above for non-matching triplets, we are
guaranteed that a matching pair has been found, or we can safely determine that a = 0.

4.2 Simon’s algorithm: quantum computation

Using a quantum computer, we can determine a much faster. The idea, first described in
[Simon, 1997], is to apply the circuit in Figure 13.

|0〉n /n H⊗n /n
Uf

/n H⊗n /n M

|0〉n /n /n

Figure 13: Quantum circuit used in Simon’s algorithm.

From an algebraic point of view, this corresponds to the following operation:

(H⊗n ⊗ I⊗n)Uf (H⊗n ⊗ I⊗n)(|0〉n ⊗ |0〉n).

We now analyze the output of the quantum circuit, by looking at the quantum states at inter-
mediate steps of the circuit. Let |ψ〉 be the state just before the Uf gate, |φ〉 the state just after
Uf , and |χ〉 the final state. In other words:

|ψ〉 = (H⊗n ⊗ I⊗n)(|0〉n ⊗ |0〉n)

|φ〉 = Uf (H⊗n ⊗ I⊗n)(|0〉n ⊗ |0〉n)

|χ〉 = (H⊗n ⊗ I⊗n)Uf (H⊗n ⊗ I⊗n)(|0〉n ⊗ |0〉n).

16

For |ψ〉, we know that H⊗n creates a uniform superposition of |j〉n, j = 0, . . . , 2n − 1 over the
first n quantum bits. Therefore we can write:

|ψ〉 = (H⊗n ⊗ I⊗n)(|0〉n ⊗ |0〉n) =
1√
2n

2n−1∑
j=0

|j〉n ⊗ |0〉n.

By linearity, applying Uf to this state yields:

|φ〉 = Uf |ψ〉 =
1√
2n

2n−1∑
j=0

|j〉n ⊗ |0⊕ f(j)〉n =
1√
2n

2n−1∑
j=0

|j〉n ⊗ |f(j)〉n.

We now need to analyze the effect of applying further Hadamard gates on the top lines of the
circuit. To do so, we need an algebraic expression for the action of Hadamard gates on basis
states. The effect of H on a single qubit can be summarized as follows:

H|z〉1 =
1√
2

(|0〉1 + (−1)z|1〉1) =
1√
2

1∑
k=0

(−1)k·z|k〉1.

This is consistent with our previous definition. If we apply H⊗n on an n-qubit basis state, we
obtain:

H⊗n|z〉n =
1√
2n

1∑
kn−1=0

· · ·
1∑

k0=0

(−1)
∑n−1
j=0 kj ·(zBn)j+1 |kn−1〉1 ⊗ · · · ⊗ |k0〉1

=
1√
2n

2n−1∑
k=0

(−1)kBn•zBn |k〉n,

where • is the bitwise dot product. This formula can be directly applied to our computation.
The next step in the circuit is given by:

|χ〉 = (H⊗n ⊗ I⊗n)
1√
2n

2n−1∑
j=0

|j〉n ⊗ |f(j)〉n =

=
1

2n

2n−1∑
j=0

2n−1∑
k=0

(−1)kBn•jBn |k〉n ⊗ |f(j)〉n.

When we make a measurement on the top n qubit lines of |χ〉, we obtain one of the states |k〉n
with probability equal to the the sum of the square of the coefficient of the states |k〉n⊗ |f(j)〉.
Notice that by assumption, |k〉n ⊗ |f(j)〉n = |k〉n ⊗ |f(jBn ⊕ aBn)〉n. Therefore, the coefficient
of the basis state |k〉n⊗|f(j)〉n is the sum of the coefficient of the basis state |k〉n⊗|f(j)〉n and
the basis state |k〉n ⊗ |f(jBn ⊕ aBn)〉n. Such sum of two coefficients can be expressed as:

(−1)kBn•jBn + (−1)kBn•(jBn⊕aBn)

2n
=

(−1)kBn•jBn + (−1)kBn•jBn(−1)kBn•aBn

2n

=
(−1)kBn•jBn

(
1 + (−1)kBn•aBn

)
2n

.

Clearly if kBn • aBn is odd, the numerator cancels out and the sum is equal to 0. Otherwise, if
kBn •aBn is even, the sum is equal to ± 2

2n . Performing a measurement on the top n qubit lines,

17

we observe the binary string kBn as output with probability 2n−1
(
± 2

2n

)2
= 1

2n−1 , where the

multiplication factor 2n−1 comes from the fact that there are 2n

2 distinct values for f(j). Thus,
the only basis states that have positive probability to be measured are those states |k〉n⊗|f(j)〉n
for which kBn • aBn ≡ 0 mod 2. Notice that unless k = 0, then there is a nonempty set of bits
for which the modulo 2 sum of aBn must vanish. In this case, unless we are unlucky and we
obtain the vector kBn = 0Bn or some other unlucky cases that will be specified later, we can
express one of such bits as a modulo 2 sum of the others, and we eliminate half of the possible
values for a.

Our discussion shows that with a single quantum computation, with high probability we
learn very valuable information about a, and we can approximately halve the search space for
a. It now remains to fully specify in a more precise manner how this information can be used.

4.3 Simon’s algorithm: description and analysis

The quantum algorithm described in the previous section yields information on a, but it does
not output a directly. To recover a, further calculations have to be performed. This is a typical
situation in quantum algorithms: a quantum computation measures some properties of the
desired answer; then, classical computations are used to analyze these properties and obtain
the desired answer. Thus, even if the quantum algorithm does not explicitly output the desired
answer, it allows us to get closer to our goal.

In the specific case of the problem discussed here, the quantum computation allows us
to learn k such that kBn • aBn ≡ 0 mod 2. We embed this equation into an algorithm as
follows: we initialize E ← ∅; then, while the system of equations E does not have a unique
solution, we apply the circuit described in the previous section to obtain k, and add the equation
kBn • aBn ≡ 0 mod 2 to E.

Because at every iteration we obtain a random k for which kBn • aBn ≡ 0 mod 2, we just
have to obtain n linearly independent vectors kBn (where independence is intended modulo
2) to ensure that the system has a unique solution. In continuous space, uniform random
sampling of vectors yields linearly independent vectors with probability 1. In this case we are
considering linear independence among vectors that have coefficients 0 or 1, and independence
is in terms of the modulo 2 sum, so the argument is less clear; however, it is possible to show
that the probability of obtaining n such linearly independent vectors after sampling n+ t times
is bounded below by 1− 1

2t+1 [Mermin, 2007, Apx. G]. Therefore, with overwhelming probability
after slightly more than n executions of the quantum circuit, and therefore O(n) queries to the
function f , we determine the solution to the problem with a classical computation that can
be performed in polynomial time (i.e., O(n2) to determine a solution to the system of linear
equations modulo 2). Compare this with the O(2n/2) queries that are required by a classical
algorithm, and we have shown an exponential speedup.

This algorithm shows a typical feature of quantum algorithms: there is a classical compu-
tation to verify that the correct solution to the problem has been found. Indeed, quantum
algorithms are probabilistic algorithm, and we can only try to increase the probability that the
correct answer is returned. For this reason, we need a way to deterministically (i.e., classically)
verify correctness. In other words, the quantum algorithm is applied to a problem for which it
is difficult to compute the solution, but once the solution is obtained, it is easy to verify that it
is correct.

18

5 Black-box search: Grover’s algorithm

Simon’s algorithm gives an exponential speedup with respect to a classical algorithm, but it
solves a very narrow (and not practically useful) problem. We now describe an algorithm that
gives only a polynomial (more specifically, quadratic) speedup with respect to classical, but it
applies to a very large class of (practically useful) problems. The algorithm is known as Grover’s
search [Grover, 1996].

The problem solved by the algorithm can be described as black-box search: we are given
a circuit that computes an unknown function on binary variables, and we want to determine
for which value(s) of the input the function gives output 1. In other words, we are trying to
determine the unique binary string that satisfies a property encoded by a circuit. The original
paper [Grover, 1996] describes this as looking for a certain element in a database.

The basic idea of the algorithm is to start with the uniform superposition of all basis states,
and then, iteratively, increase the amplitudes (i.e., the coefficients in the superposition of basis
states) of states that correspond to binary strings for which the unknown function gives output
1.

We need some definitions. Let f : {0, . . . , 2n − 1} → {0, 1}, and assume that there exists
a unique ` ∈ {0, . . . , 2n − 1} : f(`) = 1, i.e., there is a unique element in the domain of the
function that yields output 1. We want to determine `. (We remark that Grover’s search can
also be applied to the case in which there are multiple input values that yield output 1, and
we want to retrieve any of them; however, the analysis in that case is slightly more convoluted,
and is not pursued here.)

5.1 Classical algorithm

Given the problem definition, classical search cannot do better than O(2n) operations. Indeed,
any deterministic classical algorithm may need to explore all 2n possible input values before
finding `: given any deterministic classical algorithm, there exists a permutation π of {0, . . . , 2n−
1} that represents the longest execution path (i.e., sequence of values at which f is queried) of
such algorithm. Then, if ` = π(2n − 1) the algorithm will require O(2n) queries to determine
the answer, which is clearly the worst case.

At the same time, a randomized algorithm requires O(2n) function calls to have at least
a constant positive probability to determine `, and the expected number of function calls to
determine the answer is 2n−1, i.e., the expected number of flips of a biased coin with probability
of heads equal to 2−n until we obtain the first heads.

5.2 Grover’s search: algorithm description

The quantum search algorithm proposed in [Grover, 1996] requires q = n + 1 qubits. The
function f is encoded by a unitary Uf : |j〉n ⊗ |y〉1 → |j〉n ⊗ |y ⊕ f(j)〉1.

The outline of the algorithm is as follows. The algorithm starts with the uniform superpo-
sition of all basis states on n qubits. The last qubit (n + 1) is used as an auxiliary qubit, and
it is initialized to H|1〉. We obtain the quantum state |ψ〉. Then, these operations are repeated
several times:

(i) Flip the sign of the vectors for which Uf gives output 1.

(ii) Invert all the coefficients of the quantum state around the average coefficient.

19

(a) Initialization. (b) Sign flip.

A

2A

(c) Computation of the average.

A

2A

(d) Inversion about the average.

Figure 14: Sketch of Grover’s algorithm. The bars represent the coefficients of the basis states.

A full cycle of the two operations above increases the coefficients of |`〉n ⊗ (|0〉 − |1〉), and after
a certain number of cycles (to be specified later), the coefficient of the state |`〉n ⊗ (|0〉 − |1〉) is
large enough that it can be obtained from a measurement with probability close to 1.

A sketch of the ideas for the algorithm is depicted in Figure 14: we have eight basis states,
and suppose the fourth basis state is the target basis state |`〉. The representation is purely
meant to convey intuition, and does not geometrically represent the vectors encoding the quan-
tum state, but solely the amplitude of the coefficients. In Figure 14a, all basis states have the
same coefficient. In Figure 14b, the coefficient of the target basis state has its sign flipped. In
Figure 14c, we can see that the average value of the coefficients is slightly below the coefficient
for the undesired states. Taking twice the average and subtracting each coefficient now yields
the red bars in Figure 14d, where the target basis state |`〉 has a coefficient with much larger
value than the rest, and will therefore be measured with higher probability.

We now describe the steps above more in detail.

20

5.2.1 Initialization

The algorithm is initialized applying H⊗(n+1)(I⊗n ⊗X)|0〉n+1. We have:

(I⊗n ⊗X)|0〉n+1 = |0〉n ⊗ |1〉

H⊗(n+1)(I⊗n ⊗X)|0〉n+1 =
2n−1∑
j=1

1√
2n
|j〉n ⊗ (|0〉 − |1〉) =

2n−1∑
j=1

αj |j〉n ⊗ (|0〉 − |1〉) = |ψ〉.

Note that the initial coefficients are real numbers. Since the steps below will map real numbers
to real numbers, we only need to consider real numbers through the course of the algorithm.

5.2.2 Sign flip: step (i)

To flip the sign of the target state |`〉n⊗ (|0〉− |1〉), we apply Uf to |ψ〉. We now show why this
flips the sign of |`〉n ⊗ |0〉.

Uf |ψ〉 = Uf

2n−1∑
j=1

αj |j〉n ⊗ (|0〉 − |1〉)


= α`|`〉n ⊗ (|1〉 − |0〉) +

2n−1∑
j=1
j 6=`

αj |j〉n ⊗ (|0〉 − |1〉)

=

−α`|`〉n +

2n−1∑
j=1
j 6=`

αj |j〉n

⊗ (|0〉 − |1〉).

As the expression above suggests, we can always think of the last qubit as being in the unen-
tangled state (|0〉 − |1〉), with the sign flip affecting only the first n qubits. Therefore, the state
that we obtain by applying Uf to |ψ〉 is the same as |ψ〉 except that the sign of the basis states
|`〉n ⊗ |0〉 and |`〉n ⊗ |1〉 has been flipped.

5.2.3 Inversion about the average: step (ii)

To perform the inversion about the average, we want to perform the following operation:

2n−1∑
j=0

αj |j〉n →
2n−1∑
j=0

(
2

(
2n−1∑
k=0

αk
2n

)
− αj

)
|j〉n,

where
∑2n−1

k=0
αk
2n is the average, and therefore we are taking twice the average and subtracting

each coefficient from it. This is realized by the following matrix:

T =


2
2n − 1 2

2n . . . 2
2n

2
2n

2
2n − 1 . . . 2

2n
...

. . .
...

2
2n

2
2n . . . 2

2n − 1

 =


2
2n

2
2n . . . 2

2n
2
2n

2
2n . . . 2

2n
...

. . .
...

2
2n

2
2n . . . 2

2n

− I⊗n,
where the equal elements 1

2n over each row compute the average coefficient, the numberator 2
of the fraction takes twice the average, and finally we subtract the identity to subtract each

21

individual coefficient from twice the average. Define the matrix:

W := H⊗n Wjk =
1√
2n

(−1)jBn•kBn .

Indeed, the expression above can be easily verified using the following fact:

H⊗n =
1√
2

(
H⊗n−1 H⊗n−1

H⊗n−1 −H⊗n−1
)
.

But now if we let:

R =


2 0 . . . 0
0 0 . . . 0
...

. . .
...

0 0 . . . 0

 ∈ R2n×2n ,

then we can write (WRW)jk = Wj0R00W0k = 2
2n , because Rjk = 0 for j 6= 0, k 6= 0. Therefore,

using the fact that WW = I⊗n, we have:

T = WRW − I⊗n = W (R− I⊗n)W = −W (I⊗n−R)W = −Wdiag(−1, 1, . . . , 1︸ ︷︷ ︸
2n

)W := −WSW.

We must find a way to construct the matrix S := diag(−1, 1, . . . , 1). This will be discussed in
the next section. For now, we summarize our analysis of the inversion about the average by
concluding that it can be performed applying T = −WSW = −H⊗nSH⊗n to the n qubits of
interest (i.e., all qubits except the auxiliary qubit that we used for the sign flip of step (i)).

5.2.4 Constructing the matrix S

We give a sketch of the idea of how to construct S = diag(−1, 1, . . . , 1). Notice that the effect
of this quantum operation is to flip the sign of the coefficient of the basis state |0〉n, and leave
each other coefficient untouched.

Instead of flipping the sign of |0〉n, let us start by seeing how to flip the sign of |1〉n while
leaving all other coefficients untouched. Let Cn−1Z be the gate that applies Z to qubit 1 if
qubits 2, . . . , n are 1, and does nothing otherwise. This is a generalization of the CNOT gate,
and it is called “controlled Z”. Cn−1Z in the case of two qubits (n = 2) is given by the following
matrix:

CZ =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 .

Notice that in the 2-qubit case, the two circuits depicted in Figure 15 are equivalent.

•
Z

•
H H

Figure 15: Controlled-Z gate on two qubits: two possible representations.

Carrying out the matrix multiplications will confirm that the circuit on the right in Figure 15
implements exactly the CZ matrix as defined above. Thus, the controlled Z gate can be easily
realized with available gates.

22

If we have access to the Cn−1Z gate, we can write:

S = X⊗n(Cn−1Z)X⊗n,

because this operations flips the sign of the coefficient of a basis state if and only if if all qubits
have value 0 in the basis state. In circuit form, it can be written as depicted in Figure 16.

X • X

X • X

X • X
...

...

X Z X

Figure 16: Quantum circuit implementing the S operation described for Grover’s algorithm.

Of course, one has to construct the operation Cn−1Z. There are several ways to do so. One
way, suggested by [Barenco et al., 1995], is a recursive scheme that we show in Figure 17 for
n = 5 qubits, but that clearly can be generalized to arbitary qubits.

• • •
• • •
• • •

• •
√
Z

√
Z
∗ √

Z

Figure 17: Decomposition of Cn−1Z.

The idea here is to exploit the fact that Z has a square root, i.e., a matrix
√
Z such that√

Z
√
Z = Z. Notice how the scheme decomposes Cn−1Z into two copies of Cn−2Z plus a con-

stant number of gates. This yields a decomposition with O(n2) gates, see [Barenco et al., 1995]
for details. To conclude, the construction of S, and therefore of the whole circuit implementing
step (ii) of Grover’s search, can be performed in O(n2) gates.

5.3 Determining the number of iterations

Let Q be the matrix that applies a single iteration of Grover’s search, consisting of steps (i) and
(ii) above. It is paramount to determine how many iterations should be performed, so that the
coefficient of the desired basis state |`〉 ⊗ (|0〉 − |1〉) is as large as possible, and the state can be
measured. This is what we attempt to do in this section.

Since the last, auxiliary qubit is always in state |0〉 − |1〉 and is unentangled, we can ignore
it. Let

|ψD〉 = |`〉n, |ψU 〉 =

2n−1∑
j=1
j 6=`

1√
2n − 1

|j〉n


be the desirable and undesirable quantum states, respectively. At iteration k of the algorithm let

us denote the quantum state by |ψk〉 = dk|ψD〉+ uk|ψU 〉. Initially, d0 = 1√
2n

and u0 =
√

2n−1
2n ,

23

where notice that to obtain u0 from the value of an individual coefficient in |ψU 〉 we have
multiplied by

√
2n − 1 for normalization.

At step (i), the algorithm flips dk|ψD〉+uk|ψU 〉 → −dk|ψD〉+uk|ψU 〉. There is only one state
with coefficient dk, and there are 2n− 1 states with coefficient uk, so the value of the coefficient
for these states is, respectively, dk and uk√

2n−1 . Their average at iteration k is therefore:

Ak =
(2n − 1) 1√

2n−1uk − dk
2n

=

√
2n − 1uk − dk

2n
.

At step (ii), the algorithm maps αh → 2Ak − αh for each coefficient αh. Therefore:

−α` → 2Ak + α`

αh → 2Ak − αh ∀h 6= `,

and to obtain uk from αh we need to multiply by
√

2n − 1, so the mapping of step (ii) can be
written, overall, as:

−dk|ψD〉+ uk|ψU 〉 → (2Ak + dk)|ψD〉+ (2Ak
√

2n − 1− uk)|ψU 〉 = dk+1|ψD〉+ uk+1|ψU 〉,

where we defined:

dk+1 = 2Ak + dk

uk+1 = 2Ak
√

2n − 1− uk.

Performing the substitution of Ak, we obtain:

dk+1 = 2

√
2n − 1uk − dk

2n
+ dk =

(
1− 1

2n−1

)
dk +

2
√

2n − 1

2n
uk

uk+1 = 2

√
2n − 1uk − dk

2n
√

2n − 1− uk = −2
√

2n − 1

2n
dk +

(
1− 1

2n−1

)
uk.

Now this transformation is exactly a clockwise rotation by a certain angle θ, which has exactly

the form

(
cos θ sin θ
− sin θ cos θ

)
, and in our case we have:

sin θ =
2
√

2n − 1

2n
.

Notice that because this value of the sine is very small (for large n), then we can use the

approximation sinx ≈ x (when x is close to 0) to write θ = 2
√
2n−1
2n .

Overall, the above analysis shows that each iteration performs a rotation by an angle θ of
the vectors |ψD〉 and |ψU 〉. So after k iterations we obtain the following coefficients:

dk = cos kθd0 + sin kθu0

uk = − sin kθd0 + cos kθu0.

In order to maximize the probability of obtaining |ψD〉 after a measurement, remember that
|u0| � |d0|, so the best choice is to pick kθ = π

2 which yields the largest value of |dk|. Hence,
the optimal number of iterations of Grover’s search algorithm is:

k ≈ 2nπ

4
√

2n − 1
≈ π

4

√
2n.

24

After these many iterations, we have a probability close to 1 of measuring |ψD〉 and obtaining the
sought state |`〉. Comparing this with a classical algorithm, that requires O(2n) iterations, we
obtained a quadratic speedup. Notice that if we perform more iterations of Grover’s algorithm
then the probability of measuring the desired state actually goes down, and reduces our chances
of success. Therefore, it is important to choose the right number of iterations.

References

[Barenco et al., 1995] Barenco, A., Bennett, C. H., Cleve, R., DiVincenzo, D. P., Margolus, N.,
Shor, P., Sleator, T., Smolin, J. A., and Weinfurter, H. (1995). Elementary gates for quantum
computation. Physical review A, 52(5):3457.

[Bennett, 1973] Bennett, C. H. (1973). Logical reversibility of computation. IBM journal of
Research and Development, 17(6):525–532.

[Dawson and Nielsen, 2005] Dawson, C. M. and Nielsen, M. A. (2005). The Solovay-Kitaev
algorithm. Technical Report quant-ph/0505030, arXiv.

[Deutsch, 1985] Deutsch, D. (1985). Quantum theory, the Church-Turing principle and the
universal quantum computer. In Proceedings of the Royal Society of London A: Mathematical,
Physical and Engineering Sciences, volume 400, pages 97–117. The Royal Society.

[Grover, 1996] Grover, L. K. (1996). A fast quantum mechanical algorithm for database search.
In Proceedings of the twenty-eighth annual ACM Symposium on Theory of Computing, pages
212–219. ACM.

[Kitaev, 1997] Kitaev, A. Y. (1997). Quantum computations: algorithms and error correction.
Russian Mathematical Surveys, 52(6):1191–1249.

[Kliuchnikov et al., 2016] Kliuchnikov, V., Maslov, D., and Mosca, M. (2016). Practical ap-
proximation of single-qubit unitaries by single-qubit quantum clifford and t circuits. IEEE
Transactions on Computers, 65(1):161–172.

[Mermin, 2007] Mermin, N. D. (2007). Quantum computer science: an introduction. Cambridge
University Press.

[Nielsen and Chuang, 2002] Nielsen, M. A. and Chuang, I. (2002). Quantum computation and
quantum information. Cambridge University Press, Cambridge.

[Rieffel and Polak, 2000] Rieffel, E. and Polak, W. (2000). An introduction to quantum com-
puting for non-physicists. ACM Computing surveys, 32(3):300–335.

[Rieffel and Polak, 2011] Rieffel, E. G. and Polak, W. H. (2011). Quantum computing: A gentle
introduction. MIT Press.

[Selinger, 2012] Selinger, P. (2012). Efficient Clifford+T approximation of single-qubit opera-
tors. arXiv preprint arXiv:1212.6253.

[Simon, 1997] Simon, D. R. (1997). On the power of quantum computation. SIAM journal on
computing, 26(5):1474–1483.

25

	1 Introduction
	2 Qubits
	2.1 Quantum state: basic definitions
	2.2 Basis states and superposition
	2.3 Product states and entanglement

	3 Operations on qubits
	3.1 Notation for quantum circuits
	3.2 Input-output, and measurement gates
	3.3 The no-cloning principle
	3.4 Basic operations and universality
	3.5 Can we solve NP-hard problems?

	4 A simple period finding problem: Simon's algorithm
	4.1 Classical algorithm
	4.2 Simon's algorithm: quantum computation
	4.3 Simon's algorithm: description and analysis

	5 Black-box search: Grover's algorithm
	5.1 Classical algorithm
	5.2 Grover's search: algorithm description
	5.2.1 Initialization
	5.2.2 Sign flip: step (i)
	5.2.3 Inversion about the average: step (ii)
	5.2.4 Constructing the matrix S

	5.3 Determining the number of iterations

