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Abstract

This paper describes an implementation of the new Scheme
multiple values interface. The implementation handles mul-
tiple values efficiently, with no run-time overhead for normal
calls and returns. Error checks are performed where neces-
sary to insure that the expected number of values is returned
in all situations. The implementation fits cleanly with our
direct-style compiler and stack-based representation of con-
trol, but is equally well suited to continuation-passing style
compilers and to heap-based run-time architectures.

1 Introduction

In this paper we describe an implementation of the new
Scheme multiple values interface that handles multiple val-
ues efficiently without penalizing code that does not use
them or sacrificing our fast implementation of first-class con-
tinuations. Full run-time error checking is performed to in-
sure that the correct number of values is received in all sit-
uations. We also describe how the implementation can be
adapted to handle Common Lisp’s multiple values interface.

The implementation first rewrites all direct calls to the
primitives defined by the interface into internal forms that
can be optimized by the compiler. These forms are further
rewritten to eliminate uses of multiple values in all situa-
tions except across procedure calls. Values returned from
procedure calls are handled much like values passed to pro-
cedures, simplifying the communication of multiple values to
unknown consumers. Separate multiple- and single-value re-
turn points are used to eliminate most of the error checking
overhead for multiple-value calls and all run-time overhead
from normal calls. The implementation generates especially
efficient code when the multiple value consumer is known.

Although we assume a direct-style compiler with a stack-
based run-time architecture, our results are applicable to
compilers that convert their input to continuation-passing
style and to systems that employ a heap-based run-time
architecture.

This paper is organized as follows. Section 2 describes
the Scheme multiple values interface and argues for full er-
ror checking in situations whose behavior is left unspecified
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by the adopted proposal. Section 3 presents our implemen-
tation of the interface. Section 4 discusses the performance
characteristics of our implementation. Section 5 discusses
related work. Section 6 summarizes and concludes the pa-
per.

2 Multiple Return Values

A proposal to include a multiple values interface in the suc-
cessor to the Revised4 Report on Scheme [1] has been ap-
proved [10]. Two procedures, values and call-with-values,
comprise the interface.

(values v1 . . . )

(call-with-values producer consumer )

The procedure values accepts any number of arguments and
simply passes (returns) the arguments to its continuation.
The producer argument to call-with-values may be any pro-
cedure accepting zero arguments, and consumer may be any
procedure. call-with-values applies consumer to the values
returned by invoking producer without arguments. The fol-
lowing simple examples demonstrate how call-with-values
and values interact:

(call-with-values (lambda () (values 1 2)) +) → 3

(call-with-values values (lambda args args)) → ()

In the second example, values itself serves as the producer.
It is receives no arguments and thus returns no values.

The more realistic example below employs multiple val-
ues to divide a list nondestructively into two sublists of al-
ternating elements.

(define split
(lambda (ls)

(if (or (null? ls) (null? (cdr ls)))
(values ls ’())
(call-with-values

(lambda () (split (cddr ls)))
(lambda (odds evens)

(values (cons (car ls) odds)
(cons (cadr ls) evens)))))))

(split ’(a b c d e f)) →
(a c e)
(b d f)

At each level of recursion, the procedure split returns two
values: a list of the odd-numbered elements from the argu-



ment list and a list of the even-numbered elements.
The continuation of a call to values need not be one es-

tablished by call-with-values, nor must only values be used
to return to a continuation established by call-with-values.
In particular, (values v ) and v are equivalent in all situa-
tions. For example:

(+ (values 2) 4) → 6

(if (values #t) 1 2) → 1

(call-with-values
(lambda () 4)
(lambda (x ) x )) → 4

Similarly, values may be used to pass any number of values
to a continuation that ignores the values1, as in:

(begin (values 1 2 3) 4) → 4

Because a continuation may now accept zero or more
than one value, reified continuations obtained via the proce-
dure call-with-current-continuation (call/cc) may also accept
zero or more than one argument:

(call-with-values
(lambda ()

(call/cc (lambda (k ) (k 2 3))))
(lambda (x y) (list x y))) → (2 3)

The multiple values proposal leaves unspecified the case
in which a continuation expecting exactly one value receives
zero values or more than one value. For example, the be-
havior of each of the following expressions is not specified:

(if (values 1 2) x y)

(+ (values) 5)

Similarly, since there is no requirement in Scheme to signal
an error when the wrong number of arguments is passed to a
procedure2, the behavior of each of the following expressions
is not specified:

(call-with-values
(lambda () (values 2 3 4))
(lambda (x y) x ))

(call-with-values
(lambda () (call/cc (lambda (k ) (k 0))))
(lambda (x y) x ))

Each implementor of Scheme’s multiple values interface
must decide what should happen in the unspecified cases. It
is natural for an implementation to handle cases where an
unexpected number of values are passed to the consumer in
a call-with-values call in whatever manner the implementa-
tion normally handles cases where procedures receive an un-
expected number of arguments. Like most implementations,
our implementation signals errors when procedures receive
an unexpected number of arguments, and we maintain this
semantics for call-with-values.

For a continuation expecting a single value, one approach
is to ignore the extra values when more than one value is

1This statement conflicts with the original proposal as worded,
which left the behavior in this case unspecified, but subsequent elec-
tronic discussions appear to have resulted in a consensus in favor of
the behavior described here.

2The formal semantics contained in Section 7.2 of the Revised4

Report signals an error in such cases, but the text of the report does
not appear to say whether passing the wrong number of arguments is
an error, much less that an error must be signaled.

received and to generate a special value when no values are
received, as in Common Lisp [8]. Another approach is to
ignore extra values but signal an error when no values are
received. We feel that either approach tends to mask pro-
gramming errors without adding significantly to the flexi-
bility of the language. Thus, we have chosen to signal an
error both when no values are received and when more than
one value is received by a continuation expecting a single
value. As shown in the following section, this error checking
can be implemented efficiently, with no run-time overhead
for single-value calls and returns and minimal overhead for
multiple-value calls and returns.

3 Implementation

The multiple values interface requires that call-with-values
and values be implemented as procedures. With the proce-
dural interface, closures may need to be created for the pro-
ducer and consumer, and up to four procedure calls must be
made, to call-with-values, to the producer, to values, and to
the consumer. This overhead is especially unfortunate since
a major motivation for including a multiple values interface
in Scheme is efficiency relative to other techniques for com-
municating multiple values, e.g., via lists, assignments, or
continuation-passing style.

Therefore, when primitive integrations are enabled, our
compiler recognizes and optimizes direct calls to both
call-with-values and values. Section 3.1 describes how these
calls are converted into internal forms and how the inter-
nal forms are further rewritten to eliminate in many cases
the unnecessary closures and procedure calls inherent in
the procedural interface. After rewriting, some uses of
call-with-values and values are effectively eliminated, and
the remaining uses are handled by an adaptation of the pro-
cedure call interface.

Section 3.2 describes the procedure call interface along
with efficient strategies for verifying correct return value
counts. Section 3.3 describes how procedural values for
call-with-values and values are implemented. Section 3.4 de-
scribes adjustments necessary to implement first-class con-
tinuations in the presence of multiple values and multiple-
argument continuations. Section 3.5 describes how variable-
arity consumers are supported efficiently. Finally, Sec-
tion 3.6 describes how our techniques can be adapted to
support the Common Lisp multiple values interface.

3.1 Rewriting values and call-with-values

Calls to values are converted into the internal mv-values
form:

(values) ⇒ (mv-values)

(values e) ⇒ e

(values e1 e2 e3 . . . ) ⇒ (mv-values e1 e2 e3 . . . )

Calls to values with exactly one argument are not converted
to mv-values, since (values e) must be treated the same as
e. Calls to call-with-values are converted into the internal
mv-call form:

(call-with-values producer consumer ) ⇒
(mv-call (producer ) consumer )

All uses of mv-call are normalized via syntactic rewrites so
that the producer is either an expression that evaluates to
a single value (such as a constant, variable, set! form, or
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vc: n

ret: RA

a1: arg 1

ak: arg k

. .
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arg n
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Figure 1. The diagram on the left illustrates the control state just before control
transfers to the callee. The diagram on the right shows the control state just before
control returns to the caller.

open-coded primitive application), a use of mv-values, or
an application. This is done by pushing the use of mv-call
into the producer so that the mv-call form occurs in tail
position with respect to the producer. In particular, if the
producer from the original call-with-values application is a
lambda expression (as it often will be), the mv-call can be
rewritten as follows:

(mv-call ((lambda () e)) consumer ) ⇒
((lambda () (mv-call e consumer )))

or more simply:

(mv-call ((lambda () e)) consumer ) ⇒
(mv-call e consumer )

When the mv-call producer is known to evaluate to a
single value or is an mv-values expression, the mv-call
may be rewritten into a simple application:

(mv-call es consumer ) ⇒
(consumer es)

(mv-call (mv-values e . . . ) consumer ) ⇒
(consumer e . . . )

After these and similar rewrites, only mv-call expressions
in which the producer expressions are applications remain.

The compiler performs an additional transformation
when possible that is analogous to recognizing when a direct
lambda application is equivalent to a let expression:

(mv-call expr (lambda (id . . . ) body)) ⇒
(mv-let expr (id . . . ) body)

As with let expressions, the overhead from creating a closure
and making a procedure call is avoided by treating mv-let
as a local binding operator.

At this point, we can eliminate each occurrence of
mv-values that is not in tail position with respect to the
enclosing lambda expression. If it appears in a statement
context, we need ensure only that its subexpressions are
evaluated for their effects, if any, and can therefore convert
the form into a begin expression. In any other context,
evaluating to zero or more than one value would result in
a run-time error, so we are free to replace the form with a
begin expression that generates the appropriate error mes-
sage after evaluating the mv-values subexpressions. Thus,
mv-values is reduced to a mechanism for returning zero
values or more than one value from a procedure call.

After rewriting, the following forms of mv-call, mv-let,
and mv-values remain:

(mv-call (eproc earg . . . ) expr )

(mv-let (eproc earg . . . ) (id . . . ) body)

(mv-values)

(mv-values e1 e2 e3 . . . )

In order to implement these forms as well as normal calls
and returns, we must consider the mechanisms by which
procedure calls are set up, values are returned, incorrect
numbers of values are detected, and values are provided to
mv-call and mv-let consumers.

Terminology: Throughout the remainder of this paper,
multiple-value continuations are continuations established
for the producer by mv-call and mv-let. Statement con-
tinuations are continuations that ignore the values passed to
them; these continuations are established by begin or im-
plicit begin. Single-value continuations are continuations
expecting exactly one value. Although a continuation es-
tablished by mv-call or mv-let may accept one value if
the consumer accepts one argument, such continuations are
nevertheless considered to be multiple-value continuations.
A single-value return is a return of exactly one value, and a
multiple-value return is a return of zero values or more than
one value.

3.2 Procedure call interface

Our implementation’s general procedure call mechanism re-
quires the caller to place the values of the first few (k) argu-
ment expressions into argument registers and the remaining
values onto the stack, load a “value count” register (vc) with
the number of arguments, and transfer control to the code
for the procedure. The return address is also passed in a
register, but a hole3 is left at the base of the callee’s frame,
just below the stack arguments, in which the callee may save
the register if the callee itself makes any nontail calls. On
return, the first k values are placed in the corresponding
argument registers, and the remaining values are placed at
the base of the callee’s stack frame. (See Figure 1.)

3Holes in the frame do not confuse the garbage collector since a
live pointer mask is kept behind every return point to indicate which
words of the frame must be traced during collection [3].
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The code generated for an mv-call expression evaluates
the consumer expression, saves the resulting value in a tem-
porary stack location at the top of the frame, performs the
producer call, and transfers control to the consumer. If the
mv-call expression is in tail position, the call to the con-
sumer is a tail call, and the stack return values must be
shifted to the base of the current frame before control is
transferred. (The register values need not be shifted.) The
argument count check performed by the consumer suffices to
verify that the correct number of values has been returned.

The code generated for an mv-let expression performs
the producer call and evaluates the mv-let body with the
mv-let variables bound to the register or stack locations
that contain the resulting values.

There are a variety of strategies for verifying that the
number of values returned matches the number of values ex-
pected. We describe three strategies here. The third strat-
egy is the one used by our implementation. The first two
may be reasonable choices in some circumstances, and are
included for completeness. The first requires all procedure
returns to pass back a return count along with the values,
and for all procedure call return points to check this count.
The second eliminates this overhead for single-value returns
into single-value or statement continuations, while adding
additional overhead to multiple-value returns. The third
also places no run-time overhead on single-value returns into
single-value or statement continuations and eliminates most
of the overhead for multiple-value returns as well.

3.2.1 Register-based return count

In the first and simplest strategy, all procedure call returns
set the value count register vc to the number of values re-
turned, and procedure call return points verify that the ex-
pected number of values have been received. Return points
representing single-value continuations verify that exactly
one value has been returned, but otherwise proceed as usual.
Return points representing statement continuations, which
ignore the returned values, simply proceed as usual.

An mv-let return point checks the return count to verify
that the appropriate number of arguments has been returned
and then proceeds to evaluate its body. An mv-call return
point simply invokes the consumer. The count of return
values returned in vc serves as the count of argument values
which the consumer uses to verify that the correct number
of arguments is received. If the call to the consumer is not a
tail call, the temporary location used to store the consumer
becomes the first word of the consumer’s frame, i.e., the
location used by the consumer to store its return address if
necessary.

This strategy is simple to understand and implement,
but it suffers from the drawback that single-value calls and
returns are slowed by the setting and checking of the return
count register.

3.2.2 Stack-based return count

In the second strategy, full responsibility for error checking
is placed on mv-call, mv-let, and multiple-value returns.

A flag is placed in the instruction stream behind every
return point indicating whether or not multiple return values
are accepted. This flag is set to true for both multiple-
value continuations and statement continuations, and false
for single-value continuations. In the first two cases, the
stack location directly below the return address is reserved

to hold the count of values returned. Both mv-let and
mv-call arrange to seed this slot with the value 1.

Code for a multiple-value return checks the flag in the
code stream behind the return point to insure that multiple
values are accepted. If not, an error is signaled. Otherwise,
the return value count is placed in the return count slot
below the return address (rather than in the vc register as
before) before control returns to the caller. Code for a single
value simply returns without changing the return count slot.
The return count slot need not be set in this case since it is
seeded with 1 for multiple-value continuations and ignored
by statement continuations.

Return points representing single-value and statement
continuations proceed without any checks. Single-value con-
tinuations are guaranteed to receive a single value, and state-
ment continuations do not care how many values are re-
turned. An mv-let return point retrieves the return count
from the stack, verifies that the appropriate number of ar-
guments has been returned, and evaluates the body. An
mv-call return point retrieves the consumer from its tem-
porary location, moves the return value count from the stack
into vc, and transfers control to the consumer. If the call to
the consumer is not a tail call, the location used to indicate
the number of return values becomes the location used to
store the consumer’s return address.

While this strategy is more complicated, it has the ad-
vantage that the overhead for handling multiple return val-
ues has been eliminated for normal calls and returns. The
drawback is that the overhead for handling multiple values
has increased. Multiple-value returns must check a flag be-
fore returning and must write the return count to memory
rather than to a register. Multiple-value continuations must
load the count from memory.

3.2.3 Separate multiple-value return point

Our final strategy improves the performance of multiple-
value returns and continuations without sacrificing the speed
of normal calls and returns. In place of the flag in the second
model, an alternate multiple-value return point is situated at
a fixed offset behind the normal (single-value) return point
in the instruction stream. Procedure calls returning one
value return to the single-value return point. Calls returning
zero values or more than one value place the number of
values being returned into vc and return to the multiple-
value return point.

If control returns to the single-value return point of a
single-value continuation, a single value must have been re-
turned and execution proceeds without any check. If control
returns to the alternate return point of a single-value con-
tinuation, a jump is made to an error routine signaling that
multiple values were returned to a single-value continuation.

For statement continuations, the single-value return
point again performs no check, and the multiple-value re-
turn point simply falls through to the single-value return
point, achieving the desired effect that any number of val-
ues returned are ignored.

If control returns to the single-value return point of an
mv-call, vc is loaded with the value 1 and control is trans-
ferred to the consumer. The code at the multiple-value re-
turn point jumps around the load of vc with 1, directly to
the code that transfers control to the consumer.

The single-value return point of an mv-let can simply
load vc with 1, as in mv-call, and fall through to the code
for the return count check and mv-let body. Alternatively,
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val n

val k+1

...

caller’s frame

callee’s frame

vc: n

ret: L0

a1: val 1

ak: val k

. .
 .

jump error
L0: ...
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jump L1
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...L1:
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nop
L0: ...
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caller’s frame
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a2:

Figure 2. There is now a multiple-value return point behind each normal (single-
value) return point. The diagram on the left illustrates the control state just before
a single-value return. The diagram on the right shows the control state just before a
multiple-value return.

the single-value return point can jump directly to the body
(if one value is accepted) or to the error signaling code. The
multiple-value return point of an mv-let jumps over the
single-value return point to the return count check.

Figure 2 illustrates the stack layouts for both multiple-
and single-value returns along with the code sequences found
at the various return points.

The virtues of this model are that normal calls and re-
turns proceed without overhead, and no checks are required
to prevent multiple-value returns into single-value continu-
ations. It is tempting to “optimize” the mechanisms in the
previous models by skipping the error checks necessary to
verify that a single value was returned to a single value con-
tinuation, but this model has no test to eliminate. Signaling
errors when possible even in optimized code is an essential
part of our design philosophy, and preserving the error check
at no extra cost allows us to remain consistent with this phi-
losophy without sacrificing efficiency.

3.3 Procedural versions of values and call-with-
values

The compiler can rewrite uses of call-with-values and values
when they are applied directly to arguments, but we must
still provide procedural definitions for them. Once the com-
piler recognizes direct calls to call-with-values, a procedural
definition of call-with-values is trivial:

(define call-with-values
(lambda (x y)

(call-with-values x y)))

Although this definition appears to be circular, the use of
call-with-values is recognized by the compiler and rewritten
into the corresponding mv-call form.

A trivial definition for values:

(define values
(lambda args

(apply values args)))

would be circular since the compiler recognizes only direct
calls to values. We cannot list the arguments individually
and call values directly since values accepts an indefinite
number of arguments. We thus implement values as a prim-
itive library routine. This routine first moves the stack argu-
ments, if any, to the base of the frame, leaving the register
arguments in place. It then transfers control to the nor-
mal (single-value) return point if one argument is received
(vc = 1) and to the multiple-value return point otherwise.
The argument count in vc serves as the return value count
in the latter case.

3.4 Multiple values and first-class continuations

Our strategy fits cleanly with our implementation of first-
class continuations [7]. When a continuation is captured,
the current stack segment is split into two smaller segments.
The first segment is the part of the stack in use when the
continuation is captured, and the second segment is the un-
used portion of the stack. A distinguished return address,
the address of a continuation handler, is placed at the base of
the second segment; this handler effects an implicit continu-
ation invocation if control returns through it. The displaced
return address is placed in a data structure that also links
the two segments and maintains other bookkeeping informa-
tion. Execution continues using the second stack segment
as the current stack segment.

Whether a captured continuation is invoked explicitly or
implicitly, control is transferred to one of two entry points
into the continuation handler: the single-value entry point
or the multiple-value entry point. Since the handler serves
as an artificial return point, the multiple-value entry point is
at the same fixed offset behind the single-value entry point
as for ordinary procedure call return points. The procedure
representing a continuation branches to the appropriate en-
try depending upon the number of arguments received.

The handler copies the saved stack segment4 into the

4The segment to be copied may be split before it is copied if its size
exceeds a predetermined limit on the size of segments the continuation
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Figure 3. These diagrams show the control state just before and after an implicit
continuation invocation. When a continuation is invoked, the saved stack segment is
copied to the current stack segment after the stack values (if any) are moved to their
new locations.

current segment and returns to the displaced return address.
The only difference between the multiple- and single-value
entries into the continuation handler is that the multiple-
value entry must first move the stack return values to just
beyond where the saved stack segment will be inserted into
the current segment. (See Figure 3.)

3.5 Variable-arity consumers

Scheme permits procedures to accept arbitrary numbers of
arguments through its “dot” interface. It is possible to ex-
tend mv-let to accommodate the dot interface. In place
of a simple check to verify that the exact number of values
expected has been received, mv-let verifies that the mini-
mum number expected has been received and packages the
remaining arguments in a list. This packaging can be per-
formed out-of-line to reduce code size.

Our implementation supports a multiple-arity procedure
call interface with case-lambda [4, 12]. A case-lambda
expression takes the following form:

(case-lambda (idspec body) . . . )

Each clause of a case-lambda expression specifies an in-
terface to the procedure and the expression to be evaluated
when the procedure is called through that interface. For
example:

(let ((f (case-lambda
((x ) (+ x 1))
((x . xs) (cons (+ x 2) xs))
(xs 0))))

(list (f 5) (f 1 2 3) (f ))) → (6 (3 2 3) 0)

The particular interface chosen for an application is the first
clause that accepts the number of arguments provided. Any
lambda expression can be rewritten into a case-lambda
expression with only one clause.

handler is allowed to copy [7].

Our system allows case-lambda to be used to specify
the consumer when using call-with-values. In order to allow
the consumer to be a case-lambda expression, we must
extend mv-let to handle multiple consumers. The revised
syntax for mv-let is:

(mv-let expr (idspec0 body0) . . . (idspecn bodyn))

When mv-call appears with a case-lambda expression
as the consumer, the compiler rewrites the expression as
follows:

(mv-call expr
(case-lambda

(idspec0 body0) . . .
(idspecn bodyn)))

⇒
(mv-let expr

(idspec0 body0) . . .
(idspecn bodyn))

The implementation of this extended form of mv-let is al-
most identical to the single clause case. The only difference
is that a case dispatch on the number of values received must
be performed to determine which clause to execute. As with
case-lambda, the first clause that accepts the number of
values provided is chosen as the consumer.

The optional argument interfaces provided by Common
Lisp [8] and by other Scheme systems, e.g., MIT Scheme [6],
can be handled in a similar manner.

3.6 Common Lisp multiple values interface

Our strategy can be adapted to implement the Common
Lisp multiple values interface efficiently. Common Lisp
provides two basic interfaces for receiving multiple values:
multiple-value-call and multiple-value-bind. The for-
mer is essentially equivalent to our internal mv-call form,
except that the consumer arguments are constructed from
values received from an arbitrary number of producers. The
latter is essentially equivalent to our mv-let form, except
that extra return values are ignored and the variables cor-
responding to missing values are set to nil.

In order to speed the handling of multiple-value returns
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time space

mvlet 1.00 1.00

cps 1.21 2.00

cons 1.26 1.60

byref 1.20 1.10

reverse 1.53 2.10

Table 1.

into single-value continuations, zero value returns should
place nil in the first return value location in addition to
setting the return value count to 0. The multiple-value re-
turn point for a single-value continuation may then simply
fall through to the single-value return point, as for statement
continuations. The return points for a multiple-value-call
with one producer behave the same as for our mv-call form;
handling more than one producer is a straightforward gen-
eralization but may require some shuffling of values. Both
the single- and multiple-value return points for a multiple-
value continuation established by multiple-value-bind
must generate one nil value for each return value expected
by the consumer beyond those actually returned. This may
be accomplished by a dispatch to the appropriate point in a
sequence of move instructions inserted before the consumer
code. For single-value entries, the dispatch can be replaced
by a direct jump to a fixed address within the sequence of
move instructions.

The minor savings relative to a similar adaptation of
the strategy described in Section 3.2.1 may not compensate
for the added complexity of providing two return points.
The primary benefit derived from our model when full er-
ror checking is performed comes from eliminating the return
count test for single-value continuations. No such check is re-
quired, however, by either of the strategies to implement the
Common Lisp semantics. Furthermore, on modern pipelined
architectures, the cost of moving the return value count into
the vc register, as required by the simpler strategy, is likely
to cost little or nothing.

4 Performance

The multiple values implementation has been incorpo-
rated into the Chez Scheme compiler and run-time system.
The implementation performs well, especially when calls
to call-with-values can be recognized internally as mv-let
forms. Table 1 compares the performance of several ver-
sions of the split procedure defined in Section 2. The differ-
ent variations are described below:

mvlet: values returned via values (original version)
cps: values returned via continuation-passing style
cons: values returned via cons
byref: values returned via assignments
reverse: values accumulated in reverse, then reversed

We call the original version “mvlet” since the use of
call-with-values is ultimately converted into the internal
mv-let internal form. The reverse version is included for
completeness, but does not represent a generally applicable
style for handling multiple values. Definitions for all but the
original version are given in the appendix.

time space

mvlet 1.00 1.00

mvcall 1.27 1.50

procedural 1.94 2.00

Table 2.

Both cpu time and allocation costs are given, normalized
to the values for the mvlet version. Lists of length 10 were
used as input, and the tests were timed over many itera-
tions to produce measurable data. The table shows that the
performance of the multiple values interface for this simple
benchmark is significantly better in terms of both cpu time
and allocation costs.

As a more realistic benchmark, we rewrote three passes
of our compiler that require the use of multiple values to use
the new interface in place of a vector-based interface that
we had been using. All occurrences of call-with-values are
recognizable as mv-let forms internally. This resulted in a
20% improvement in the speed of the three passes.

We also compared the performance of a set of bench-
marks that do not use multiple values (Scheme versions of
the Gabriel benchmarks [5]) before and after the multiple
value interface was added to the system. As expected, we
found that supporting multiple values has no run-time im-
pact on code that does not use them, although the code
generated is naturally slightly larger due to the addition of
multiple-value return points.

We also studied what happens when the compiler is not
able to convert calls to call-with-values into the internal
mv-let form. Table 2 compares the performance of the orig-
inal mvlet version with the following variants:

mvcall: recognition of consumer as a lambda expression
disabled

procedural: recognition of direct calls to call-with-values
and values disabled

As the table shows, the mvlet version has a significant edge.
Comparing Tables 1 and 2, it also appears that programmers
are better off, in terms of performance, using some other
mechanism for returning multiple values unless the compiler
can recognize the call-with-values application.

5 Related work

Other implementations of Scheme, notably T [13] and MIT
Scheme [6], provide multiple values interfaces. We have ex-
perimented with T Version 3.1 on a Sparc processor and
MIT Scheme Version 7.2 on an SGI MIPS processor. The
T interpreter’s semantics for multiple return values matches
ours, but the compiler does not perform the run-time checks
necessary to guarantee that the correct number of values is
received. Their compiler seems to optimize only cases where
both the producer and consumer are lambda expressions;
in other cases they use the procedural interface. In MIT
Scheme, the semantics for multiple return values is similar
to ours, but their current implementation appears to require
that values be used only to return to continuations created
by call-with-values. Their system also does not appear to
treat the case where the consumer is a lambda expression
as a local binding operation.
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The model described in Section 3.2.1, with the modi-
fication for zero-value returns mentioned in Section 3.6, is
essentially the same as the model used by Kyoto Common
Lisp [14]. Rather than intermix stack arguments with other
control information on a single stack, however, they use mul-
tiple stacks with one stack reserved for passing and returning
values to procedure calls. Also, their compiler targets C and
therefore does not have access to the machine registers, so
they use the stack for all arguments and return values.

On Sparc-based computer systems, the prescribed me-
thod for communicating whether fixed-length structures are
expected and returned in C and similar languages somewhat
resembles the stack-based return count model described in
Section 3.2.2 [11]. The return point for a call to a procedure
expected to return a structure is flagged with a particular
“unimplemented” instruction, and the address of a location
into which to place the returned structure is passed as a
special argument on the stack. A procedure returning a
structure must check to determine if the unimplemented in-
struction is at the return point. If it is, it copies the return
value to the specified address. In either case, control returns
to the instruction following the unimplemented instruction.
A procedure returning a nonstructure value returns as usual,
resulting in an unimplemented instruction trap.

The Spineless Tagless G-machine [9] uses vectored re-
turns to control closure updating. Control is returned to
one point if the closure needs to be updated and to another
return point if it does not. Also, if the result is a construc-
tor, and if the constructor has sufficiently few fields, the
fields are returned in registers instead of in a data struc-
ture. The effect in this case is a multiple-value return to the
continuation using a mechanism similar to ours.

6 Conclusions

In this paper we have described an implementation of
Scheme’s multiple values interface. The implementation
converts all direct calls to call-with-values and values into
internal forms that can be optimized by the compiler. These
forms are rewritten to eliminate uses of multiple values when
the producer is a lambda expression whose body evaluates
to one value or to multiple values via a direct call to values.
The implementation handles arbitrary consumer expressions
efficiently but optimizes the common case in which the con-
sumer is a lambda expression by treating the consumer call
as a local binding operation, as with let. The first few values
returned from a procedure call are placed in the same regis-
ters as the first few argument values passed to procedures,
and the remainder are stored on the stack as for procedure
calls. This helps make multiple-value returns efficient and
simplifies the communication of multiple values to unknown
consumers.

Full error checking for unexpected numbers of values is
performed with no run-time overhead for normal procedure
calls, i.e., single-value returns to single-value and statement
continuations, and little overhead for multiple-value proce-
dure calls. This is accomplished with the use of a separate
multiple-value return point placed at a fixed offset behind
the normal (single-value) return point for each procedure
call.

Programs that wish to ignore extra values in particular
contexts can do so easily by calling call-with-values explic-
itly. The syntactic form first defined below abstracts the
discarding of more than one value when only one is desired:

(define-syntax first
(syntax-rules ()

(( expr )
(call-with-values

(lambda () expr )
(lambda (x . y) x )))))

Ignoring values in this manner is inexpensive in our imple-
mentation because of our treatment of call-with-values and
because our implementation does not construct lists for un-
referenced “rest” variables. The code generated simply ver-
ifies that at least one value has been returned and ignores
the remaining values.

It is possible to implement the multiple values interface
entirely in Scheme, although doing so precludes doing some-
thing sensible when a single value continuation receives zero
values or more than one value. Such an implementation is
also certain to be much less efficient than a native imple-
mentation of the interface. The code below demonstrates
one way in which this can be done:

(define call-with-current-continuation)
(define values)
(define call-with-values)
(let ((magic (cons ’multiple ’values)))

(define magic?
(lambda (x )

(and (pair? x ) (eq? (car x ) magic))))

(set! call-with-current-continuation
(let ((primitive-call/cc

call-with-current-continuation))
(lambda (p)

(primitive-call/cc
(lambda (k )

(p (lambda args
(k (apply values args)))))))))

(set! values
(lambda args

(if (and (not (null? args)) (null? (cdr args)))
(car args)
(cons magic args))))

(set! call-with-values
(lambda (producer consumer )

(let ((x (producer )))
(if (magic? x )

(apply consumer (cdr x ))
(consumer x ))))))

The special flag (magic) used to mark multiple values can
be any unique Scheme object. When anything other than a
single value is returned to a single value continuation, the
continuation receives a list whose car is this flag. Without
altering the compiler or macro expander’s treatment of ap-
plications, it is not possible to signal an error or even to
ignore extra values in this case.

As with first-class continuations, multiple return val-
ues can be implemented via a global source-level rewrite
into continuation-passing style (CPS). Just as implementing
first-class continuations in this manner prevents the com-
piler from assuming that all continuations have dynamic ex-
tent, implementing multiple return values in this manner
prevents the compiler from assuming that all continuations
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receive exactly one value. CPS compilers that wish to flag
return value count mismatches must therefore verify that
the correct number of values is passed to each continuation.
The same technique used to implement multiple values in
a direct-style compiler such as ours may be used in a CPS
compiler: the multiple-value return point behind each nor-
mal return point becomes a multiple-value entry point be-
hind each normal continuation entry point.

A compiler might perform a CPS conversion early in
the compilation process to simplify subsequent process-
ing, then convert back into direct style just prior to code
generation. The reverse CPS transformation developed
by Danvy and Lawall [2] to recognize transformed calls
to call-with-current-continuation and reified continuations
should be straightforward to extend to recognize trans-
formed calls to call-with-values and values.

Unoptimized multiple-value calls may require as many
as two additional closures and four additional procedure
calls. In implementations that do not optimize the inter-
face when possible, code using the interface will likely run
slower than code using other mechanisms for returning mul-
tiple values. Unless most implementations optimize the in-
terface, call-with-values will be of little practical use as a
portable tool for performance enhancement.

Because the interface is procedural rather than syntac-
tic, the code that produces the values must be encapsu-
lated in a zero-argument procedure. As well as leading to
awkward-looking code, this has the effect of forcing the con-
sumer expression to be evaluated before the values are com-
puted. This artificial ordering constraint does not exist for
ordinary calls: the consumer (procedure expression) may
be evaluated either before or after the argument values are
computed. The constraint can result in the generation of
suboptimal code.

Because of the awkwardness, potential inefficiency, and
artificial ordering constraint inherent in the procedural in-
terface, we believe it would have been better to have stan-
dardized on a syntactic version of call-with-values, which we
might call with-values:

(with-values producer consumer )

In this form, the producer is an expression evaluating to
zero or more values, and the consumer is an expression eval-
uating to a procedure that accepts the number of values
yielded by the producer. Nothing would be lost with this
change: call-with-values can be defined trivially in terms of
with-values.
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A Variants of split used for performance compar-
isons

(define split-cps
(lambda (ls values)

(if (or (null? ls) (null? (cdr ls)))
(values ls ’())
(split-cps (cddr ls)

(lambda (odds evens)
(values (cons (car ls) odds)

(cons (cadr ls) evens)))))))

(define split-cons
(lambda (ls)

(if (or (null? ls) (null? (cdr ls)))
(cons ls ’())
(let ((pair (split-cons (cddr ls))))

(cons (cons (car ls) (car pair ))
(cons (cadr ls) (cdr pair )))))))
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(define split-byref
(lambda (ls pair )

(if (or (null? ls) (null? (cdr ls)))
(begin (set-car! pair ls)

(set-cdr! pair ’()))
(begin (split-byref (cddr ls) pair )

(set-car! pair
(cons (car ls) (car pair )))

(set-cdr! pair
(cons (cadr ls) (cdr pair )))))))

(define split-reverse
(lambda (ls)

(let f ((ls ls) (odds ’()) (evens ’()))
(cond

((null? ls)
(cons (reverse odds) (reverse evens)))

((null? (cdr ls))
(cons (reverse (cons (car ls) odds))

(reverse evens)))
(else (f (cddr ls)

(cons (car ls) odds)
(cons (cadr ls) evens)))))))
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