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What are Native Threads?

Each thread is a separate O/S thread

Each may run on own processor or core

All threads share same heap, file descriptors, etc.
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Why Native Threads?

Express multithreaded computations

Handle blocking operations

Take advantage of multiple processors and cores

Interoperate with existing threaded applications
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Outline

Features / Examples

Thread safety

Suspending and killing threads

Implementation

Conclusion
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Model

Based on Posix Threads

Fork threads dynamically

Use mutexes for mutual exclusion

Use conditions to avoid polling
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Thread Creation

(fork-thread thunk)
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Mutexes

(make-mutex)

(mutex-acquire mutex)

(mutex-release mutex)

(with-mutex exprm body)
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Conditions

(make-condition)

(condition-wait condition mutex)

(condition-signal condition)

(condition-broadcast condition)
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Example

(let ([m (make-mutex)] [c (make-condition)])
(with-mutex m

(fork-thread
(lambda ()

(with-mutex m
(display "hello\n"))
(condition-signal c)))

(condition-wait c m)
(display "goodbye\n")))

prints:

hello
goodbye
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Example: pcall

(define-syntax pcall
(syntax-rules ()

[(_ e0 e1 . . .)
(let ([m (make-mutex)]

[c (make-condition)]
[ls (list (lambda () e0) (lambda () e1) . . .)]
[n (length ’(e0 e1 . . .))])

(with-mutex m
(do ([ls ls (cdr ls)])

((null? ls))
(fork-thread

(lambda ()
(set-car! ls ((car ls)))
(with-mutex m

(set! n (- n 1))
(when (= n 0) (condition-signal c))))))

(condition-wait c m))
(apply (car ls) (cdr ls)))]))
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Thread Activation

Thread activated by make-thread

Thread can also be activated in C

Should deactivate thread before blocking

Deactivation implicit for I/O operations
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Thread Parameters

Thread parameters ≡ thread-local storage

(make-thread-parameter value)
(make-thread-parameter value filter)

(parameterize ([exprp exprv] ...) body)

Setting/parameterizing affects only current thread

Child inherits parameter values, not locations

Can still create global parameters:

(make-parameter value)
(make-parameter value filter)
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Thread Parameters

Example thread parameters:

• current-input-port

• current-output-port

• printer controls
• compiler controls

Example global parameters:

• current-directory

• command-line

• collector controls
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Continuations

Continuations are per-thread

Can invoke continuation created in another thread

Should not be used to exit from thread
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Thread Safety

Most primitives are thread-safe . . .

• car, cons, +, =, list-sort, map, etc.

. . . including many destructive operations

• set-car!, vector-set!
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Thread Safety

Some primitives are “relatively” unsafe . . .

• put-char, get-char
• hashtable-set!, hashtable-ref

. . . relative, that is, to a given object

• okay to read/write different ports/hashtables concurrently

Improper synchronization is bad:

• lost data
• corrupted heap

Caveat emptor
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Thread Safety

Remainder are “safety preserving”

• apply, map, for-each
• eval, compile-file (!)
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Suspendable Threads

Threads cannot be suspended, interrupted, or killed

Justification:

• asynchronous interrupts ≡ indeterminate state
• keep the mechanism simple
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Suspendable Threads

Threads cannot be suspended, interrupted, or killed

Solution: ask thread politely

• please suspend yourself

• please interrupt yourself
• please die

But, will it listen?
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Suspendable Threads

Represent “suspendable thread” as a record

conditionmutexsuspend flag

Thread object

Set suspend flag #t to request suspension

Thread polls flag via lightweight threads, timer interrupts, etc.

• if suspension requested, waits on condition

Set flag #f and signal condition to resume
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Suspendable Threads

(define-record-type sthread
(fields (mutable suspend)

(immutable mutex)
(immutable cond))

(protocol
(lambda (new)
(lambda ()

(new #f (make-mutex) (make-condition))))))

conditionmutexsuspend flag

Thread object
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Suspendable Threads

(define fork-sthread
(lambda (thunk)

(define ticks 1000)
(let ([sthr (make-sthread)])
(fork-thread

(lambda ()
(timer-interrupt-handler

(lambda ()
(with-mutex (sthread-mutex sthr)

(when (sthread-suspend sthr)
(condition-wait

(sthread-cond sthr)
(sthread-mutex sthr))))

(set-timer ticks)))
(set-timer ticks)
(thunk)))

sthr)))
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Suspendable Threads

(define suspend-sthread
(lambda (sthr)

(with-mutex (sthread-mutex sthr)
(set-sthread-suspend! sthr #t))))

(define restart-sthread
(lambda (sthr)

(with-mutex (sthread-mutex sthr)
(set-sthread-suspend! sthr #f)
(condition-signal (sthread-cond sthr)))))
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Thread Implementation

Thread context

Stack management

Heap management

Parameters

Challenges
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Thread Implementation

fp

thread context

local stack segment local heap segment

esp eap

parameter block

ap
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Garbage Collection

Collection is presently single-threaded

All active threads must rendezvous

Last thread collects, then releases others . . .

. . . or before deactivating, last thread wakes proxy
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Challenges

Surprisingly few . . .

• segmented stack, heap essential
• mostly stateless compiler helped

. . . but there were some:

• setting dirty bits

• finding uses of state

• dealing with state
• bugs

27



Dealing with State

Some state is inherently per-thread

• e.g., compiler’s variable records
• no worries

Other state can be made per-thread

• e.g., random seed, bignum temps
• embed in thread context . . .
• . . . or make into thread parameters

Other state requires synchronization

• e.g., system symbol table
• try to minimize synchronization window
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The Bug from Hell

Some bad bugs:

• thread bugs (nonreproducible)

• collector bugs (indirect effects)

• multiple bugs (conflicting effects)

Worst case senario:

• multiple thread bugs involving the collector

Required eight (!) days to track
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Dazzit!

Specialized database engine

• serves queries through web interface
• run-time code provided as shared library

• adaptors for Apache, FastCGI, IIS, .NET, Java
• each supports native threads

• Linux, Mac, Windows, Solaris

To reduce synchronization overhead:

• shared data is read-only

• modifications in per-thread caches

Interesting features:

• each query is compiled on the fly
• html generated to communicate results
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Future Work

Safer ports and hashtables

Parallel garbage collection

Parallel garbage collection

Lighter weight synchronization

Higher-level abstractions
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Conclusions

Not for the faint of heart

A good starting point is helpful

• segmented stacks and heaps

• few uses of global state

Posix Threads also helpful

• reduced implementation time

• simplified portability
• worth additional overhead
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